when for every $\gamma_1\ilrof\apreorder i {\Gamma}\gamma_2$ and $S_1
\ilrof\apreorder i {\u B} S_2$, $S_1[M_1[\gamma_1]]\ix\apreorder
i \result(S_2[M_2[\gamma_2]])$.
\item$\Gamma\vDash V_1\ilrof\apreorder{i}{} V_2\in A$ holds when
for every $\gamma_1\ilrof\apreorder i {\Gamma}\gamma_2$, $V_1[\gamma_1]\ilrof\apreorder i A V_2[\gamma_2]$
\item$\Gamma\pipe\u B \vDash S_1\ilrof\apreorder{i}{} S_2\in\u B'$ holds
when for every $\gamma_1\ilrof\apreorder i {\Gamma}\gamma_2$ and
$S_1' \ilrof\apreorder i {\u B'} S_2'$, $S_1'[S_1[\gamma_1]]\ilrof\apreorder
i {\u B} S_2'[S_2[\gamma_2]])$.
\end{enumerate}
\end{definition}
We next want to prove that the logical preorder is a congruence
relation, i.e., the fundamental lemma of the logical relation.
% TODO: downward closure lemma
\begin{theorem}{Logical Preorder is a Congruence}
For any preorder on results with diverge least element, the logical
preorder $\ilrof\apreorder i {}$ is a congruence relation, i.e.,
closed under the congruence rules of figure TODO.
\end{theorem}
\begin{proof}
TODO: adapt from below
\end{proof}
\begin{corollary}{Reflexivity}
For any $\Gamma\vdash M : \u B$, and $i \in\mathbb{N}$,
\[\Gamma\vDash M \ilorof\apreorder i {} M \in\u B.\]
\end{corollary}
% Corollary: relation in the limit recovers the original ordering!
% Lemma: relation is a module of the ordering/infinite relation
\begin{figure}
\begin{mathpar}
{\logty{i}{A}}\subseteq\{\cdot\vdash V : A \}^2 \quad\qquad{\logty{i}{\u B}}\subseteq\{\cdot\pipe\u B \vdash S : \u F (1 + 1) \}^2\quad\qquad{\logc{i}}\subseteq\{\cdot\vdash M : \u F (1 + 1) \}^2\\
{\logty{i}{A}}\subseteq\{\cdot\vdash V : A \}^2
\quad\qquad{\logty{i}{\u B}}\subseteq\{\cdot\pipe\u B \vdash S
: \u F (1 + 1) \}^2\quad\qquad{\logc{i}}\subseteq\{\cdot
\vdash M : \u F (1 + 1) \}^2\\
\begin{array}{rcl}
\Gamma\vDash M_1 \ltdyn M_2 \in\u B &=&\forall i \in\mathbb{N}, \gamma_1 \logty i \Gamma\gamma_2, S_1 \logty i {\u B} S_2.~ S_1[M_1[\gamma_1]] \logc i S_2[M_2[\gamma_2]]\\
\Gamma\vDash V_1 \ltdyn V_2 \in A &=&\forall i \in\mathbb{N}, \gamma_1 \logty i \Gamma\gamma_2.~ V_1[\gamma_1] \logty i A V_2[\gamma_2]\\