Skip to content
Snippets Groups Projects
Commit 2659fb3c authored by Eric Giovannini's avatar Eric Giovannini
Browse files

Additions to Lift.agda

parent 5812379c
No related branches found
No related tags found
No related merge requests found
......@@ -32,7 +32,7 @@ private
▹_ A = ▹_,_ k A
-- Lift + Error monad
-- Lift + Error monad explicitly
data L℧ (X : Type ℓ) : Type ℓ where
η : X → L℧ X
℧ : L℧ X
......@@ -43,10 +43,24 @@ data L (X : Type ℓ) : Type ℓ where
η : X -> L X
θ : ▹ (L X) -> L X
-- Delay function
-- Error monad
data Error (X : Type ℓ) : Type ℓ where
ok : X -> Error X
error : Error X
-- Lift + Error as a combination of L and Error
L℧' : (X : Type ℓ) -> Type ℓ
L℧' X = L (Error X)
-- Delay function for lift with error
δ : {X : Type ℓ} -> L℧ X -> L℧ X
δ = L℧.θ ∘ (next {k = k})
-- Delay for lift without error
δL : {X : Type ℓ} -> L X -> L X
δL = L.θ ∘ next
L℧→sum : {X : Type ℓ} -> L℧ X → (X ⊎ ⊤) ⊎ (▹ L℧ X)
L℧→sum (η x) = inl (inl x)
......@@ -104,6 +118,14 @@ Iso-L {X = X} = iso to inv sec retr
L-unfold : {X : Type ℓ} -> L X ≡ X ⊎ (▹ (L X))
L-unfold = isoToPath Iso-L
L-unfold-η : {X : Type ℓ} (x : X) ->
transport L-unfold (η x) ≡ inl x
L-unfold-η x = cong inl (transportRefl x)
L-unfold-θ : {X : Type ℓ} (l~ : ▹ (L X)) ->
transport L-unfold (θ l~) ≡ inr l~
L-unfold-θ l~ = cong inr (transportRefl l~)
-- Defining L using a guarded fixpoint
L-fix : Type ℓ -> Type ℓ
......@@ -114,11 +136,14 @@ L-fix-unfold : {X : Type ℓ} -> L-fix X ≡ (X ⊎ (▹ (L-fix X)))
L-fix-unfold = fix-eq _
{-
L-fix-eq' : {X : Type ℓ} -> ▸ (λ t -> (L-fix X ≡ L X)) -> L-fix X ≡ L X
L-fix-eq' {X = X} IH = L-fix X ≡⟨ L-fix-unfold ⟩
((X ⊎ (▹ (L-fix X)))) ≡⟨ (λ i -> X ⊎ (▸ λ t -> IH t i)) ⟩
((X ⊎ (▹ (L X)))) ≡⟨ sym L-unfold ⟩
L-fix-eq' {X = X} IH = L-fix X ≡⟨ L-fix-unfold ⟩
((X ⊎ (▹ (L-fix X)))) ≡⟨ (λ i -> X ⊎ (▸ λ t -> IH t i)) ⟩
((X ⊎ (▹ (L X)))) ≡⟨ sym L-unfold ⟩
L X ∎
-}
-- Note: ▸ (λ t -> L-fix X ≡ L X) is equivalent to ▸ (next (L-fix X ≡ L X))
-- which is equivalent to ▹ (L-fix X ≡ L X)
......@@ -128,17 +153,68 @@ L-fix-eq' {X = X} IH = L-fix X ≡⟨ L-fix-unfold ⟩
-- (X ⊎ (▸ λ t -> L-fix X)) ≡ (X ⊎ (▸ λ t -> L X)) i.e.
-- (X ⊎ (▹ L-fix X)) ≡ (X ⊎ (▹ L X))
-- Same proof as above, but has better definitional behavior
L-fix-eq' : {X : Type ℓ} -> ▸ (λ t -> (L-fix X ≡ L X)) -> L-fix X ≡ L X
L-fix-eq' {X = X} IH =
L-fix-unfold ∙
(λ i -> X ⊎ (▸ λ t → IH t i)) ∙
sym L-unfold
L-fix-eq : {X : Type ℓ} -> L-fix X ≡ L X
L-fix-eq = fix L-fix-eq'
L-fix-iso : {X : Type ℓ} -> Iso (L-fix X) (L X)
L-fix-iso = pathToIso L-fix-eq
-- Action of the above isomorphism
L-fix-iso-η : {X : Type ℓ} (x : X) ->
transport L-fix-unfold (transport⁻ L-fix-eq (η x)) ≡ inl x
L-fix-iso-η {X = X} x =
let eq = (λ i -> X ⊎ (▸_ {k = k} λ t → L-fix-eq {X = X} i)) in
transport L-fix-unfold (transport⁻ L-fix-eq (η x))
≡⟨ (λ i -> transport L-fix-unfold (transport⁻ (fix-eq L-fix-eq' i) (η x))) ⟩
transport L-fix-unfold (transport⁻ (L-fix-eq' (next L-fix-eq)) (η x))
≡⟨ refl ⟩
transport L-fix-unfold
(transport⁻ (L-fix-unfold ∙ eq ∙ sym L-unfold) (η x))
≡⟨ ((λ i -> transport L-fix-unfold {!!})) ⟩
transport L-fix-unfold
((transport⁻ L-fix-unfold ∘
transport⁻ eq ∘
transport⁻ (sym L-unfold)) (η x))
≡⟨ transportTransport⁻ L-fix-unfold _ ⟩
(transport⁻ eq ∘ transport⁻ (sym L-unfold)) (η x)
≡⟨ sym (transportComposite L-unfold (sym eq) (η x)) ⟩
(transport⁻ (eq ∙ (sym L-unfold))) (η x)
≡⟨ refl ⟩
(transport (L-unfold ∙ sym eq)) (η x)
≡⟨ transportComposite L-unfold (sym eq) (η x) ⟩
((transport (sym eq)) ∘ (transport L-unfold)) (η x)
≡⟨ {!!} ⟩
(transport (sym (λ i -> X ⊎ (▸_ {k = k} λ t → L-fix-eq {X = X} i)))) (inl x)
≡⟨ {!!} ⟩
inl x ∎
{-
Iso-L-fix : {X : Type ℓ} -> Iso (L-fix X) (L X)
Iso-L-fix {X = X} = iso to inv sec {!!}
......@@ -170,8 +246,6 @@ Iso-L-fix {X = X} = iso to inv sec {!!}
-- Similar to caseNat,
-- defined at https://agda.github.io/cubical/Cubical.Data.Nat.Base.html#487
caseL℧ : {X : Type ℓ} -> {A : Type ℓ'} -> (aη a℧ aθ : A) → L℧ X → A
......@@ -196,6 +270,22 @@ caseL℧ a0 a℧ aθ (θ lx~) = aθ
-- Similar to caseNat,
-- defined at https://agda.github.io/cubical/Cubical.Data.Nat.Base.html#487
caseL : {X : Type ℓ} -> {A : Type ℓ'} -> (aη aθ : A) → L X → A
caseL aη aθ (η x) = aη
caseL a0 aθ (θ lx~) = aθ
-- Similar to znots and snotz, defined at
-- https://agda.github.io/cubical/Cubical.Data.Nat.Properties.html
Lη≠Lθ : {X : Type ℓ} -> {x : X} -> {lx~ : ▹ (L X)} -> ¬ (L.η x ≡ θ lx~)
Lη≠Lθ {X = X} {x = x} {lx~ = lx~} eq =
rec* (subst (caseL X ⊥*) eq x) -- subst (caseL℧ X ⊥ ⊥) eq x
-- Injectivity results for lift with error
-- TODO: Does this make sense?
pred : {X : Type ℓ} -> (lx : L℧ X) -> ▹ (L℧ X)
......@@ -218,12 +308,37 @@ inj-θ lx~ ly~ H = let lx~≡ly~ = cong pred H in
λ t i → lx~≡ly~ i t
-- Monadic structure
-- Injectivity results for Lift
η-inv : {X : Type ℓ} -> L X -> X -> X
η-inv (η x) y = x
η-inv (θ lx~) y = y
inj-η : {X : Type ℓ} (x y : X) ->
L.η x ≡ L.η y ->
x ≡ y
inj-η x y H = λ i -> η-inv (H i) x -- also works: η-inv (H i) y
-----------------------
-- Monadic structure --
-----------------------
retL : {X : Type ℓ} -> X -> L℧ X
retL = η
extL' : (A -> L B) -> ▹ (L A -> L B) -> L A -> L B
extL' f rec (η a) = f a
extL' f rec (θ la~) = θ (rec ⊛ la~)
extL : (A -> L B) -> L A -> L B
extL f = fix (extL' f)
ret : {X : Type ℓ} -> X -> L℧ X
ret = η
ext' : (A -> L℧ B) -> ▹ (L℧ A -> L℧ B) -> L℧ A -> L℧ B
ext' f rec (η x) = f x
ext' f rec ℧ = ℧
......@@ -312,7 +427,7 @@ monad-assoc : {A B C : Type} -> (f : A -> L℧ B) (g : B -> L℧ C) (la : L℧ A
monad-assoc = {!!}
{-
ext-comp-ret : (f : L℧ A -> L℧ B) (a : A) (n : ℕ) ->
ext (f ∘ ret) ((δ ^ n) (η a)) ≡ (δ ^ n) (f (η a))
ext-comp-ret f a zero = ext-eta a (f ∘ ret)
......@@ -326,6 +441,24 @@ ext-comp-ret f a (suc n) =
δ (ext (f ∘ ret) ((δ ^ n) (η a)))
≡⟨ cong δ (ext-comp-ret f a n) ⟩
δ ((δ ^ n) (f (η a))) ∎
-}
ext-comp-ret : (f : L℧ A -> L℧ B) (a : A) (n : ℕ) ->
ext (f ∘ ret) ((δ ^ n) (η a)) ≡ f ((δ ^ n) (η a))
ext-comp-ret f a zero = ext-eta a (f ∘ ret)
ext-comp-ret f a (suc n) =
ext (f ∘ ret) (δ ((δ ^ n) (η a)))
≡⟨ ext-theta (f ∘ ret) _ ⟩
θ (ext (f ∘ ret) <$> (next ((δ ^ n) (η a))))
≡⟨ refl ⟩
θ (λ t -> ext (f ∘ ret) (next ((δ ^ n) (η a)) t))
≡⟨ refl ⟩
δ (ext (f ∘ ret) ((δ ^ n) (η a)))
≡⟨ cong δ (ext-comp-ret f a n) ⟩
δ (f ((δ ^ n) (η a)))
≡⟨ {!!} ⟩
f (δ ((δ ^ n) (η a))) ∎
-- Need f to preserve ℧ and preserve θ...
......@@ -521,3 +654,28 @@ theta-delta-n-comm lx~ (suc n) =
≡⟨ cong δ (theta-delta-n-comm lx~ n) ⟩
δ ((δ ^ n) (θ lx~)) ∎
L▹X→▹LX' : {X : Type ℓ} ->
▹ (L℧ (▹ X) -> ▹ (L℧ X)) ->
(L℧ (▹ X) -> ▹ (L℧ X))
L▹X→▹LX' _ (η x~) t = η (x~ t)
L▹X→▹LX' _ ℧ t = ℧
L▹X→▹LX' rec (θ lx~) t = θ (rec t (lx~ t))
L▹X→▹LX : {X : Type ℓ} ->
L℧ (▹ X) -> ▹ (L℧ X)
L▹X→▹LX = fix L▹X→▹LX'
-- Doesn't seem that we can write the above function
-- using mapL:
-- The following vars are not allowed in a later value applied to t : [x~]
-- when checking that the expression x~ t has type X
{-
test' : {X : Type ℓ} ->
(L℧ (▹ X) -> ▹ (L℧ X))
test' l t = mapL f l
where
f : ▹ _ → _
f x~ = {!x~ t!}
-}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment