Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
2659fb3c
Commit
2659fb3c
authored
1 year ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
Additions to Lift.agda
parent
5812379c
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Semantics/Lift.agda
+171
-13
171 additions, 13 deletions
formalizations/guarded-cubical/Semantics/Lift.agda
with
171 additions
and
13 deletions
formalizations/guarded-cubical/Semantics/Lift.agda
+
171
−
13
View file @
2659fb3c
...
...
@@ -32,7 +32,7 @@ private
▹_ A = ▹_,_ k A
-- Lift + Error monad
-- Lift + Error monad
explicitly
data L℧ (X : Type ℓ) : Type ℓ where
η : X → L℧ X
℧ : L℧ X
...
...
@@ -43,10 +43,24 @@ data L (X : Type ℓ) : Type ℓ where
η : X -> L X
θ : ▹ (L X) -> L X
-- Delay function
-- Error monad
data Error (X : Type ℓ) : Type ℓ where
ok : X -> Error X
error : Error X
-- Lift + Error as a combination of L and Error
L℧' : (X : Type ℓ) -> Type ℓ
L℧' X = L (Error X)
-- Delay function for lift with error
δ : {X : Type ℓ} -> L℧ X -> L℧ X
δ = L℧.θ ∘ (next {k = k})
-- Delay for lift without error
δL : {X : Type ℓ} -> L X -> L X
δL = L.θ ∘ next
L℧→sum : {X : Type ℓ} -> L℧ X → (X ⊎ ⊤) ⊎ (▹ L℧ X)
L℧→sum (η x) = inl (inl x)
...
...
@@ -104,6 +118,14 @@ Iso-L {X = X} = iso to inv sec retr
L-unfold : {X : Type ℓ} -> L X ≡ X ⊎ (▹ (L X))
L-unfold = isoToPath Iso-L
L-unfold-η : {X : Type ℓ} (x : X) ->
transport L-unfold (η x) ≡ inl x
L-unfold-η x = cong inl (transportRefl x)
L-unfold-θ : {X : Type ℓ} (l~ : ▹ (L X)) ->
transport L-unfold (θ l~) ≡ inr l~
L-unfold-θ l~ = cong inr (transportRefl l~)
-- Defining L using a guarded fixpoint
L-fix : Type ℓ -> Type ℓ
...
...
@@ -114,11 +136,14 @@ L-fix-unfold : {X : Type ℓ} -> L-fix X ≡ (X ⊎ (▹ (L-fix X)))
L-fix-unfold = fix-eq _
{-
L-fix-eq' : {X : Type ℓ} -> ▸ (λ t -> (L-fix X ≡ L X)) -> L-fix X ≡ L X
L-fix-eq' {X = X} IH = L-fix X ≡⟨ L-fix-unfold ⟩
((X ⊎ (▹ (L-fix X)))) ≡⟨ (λ i -> X ⊎ (▸ λ t -> IH t i)) ⟩
((X ⊎ (▹ (L X)))) ≡⟨ sym L-unfold ⟩
L-fix-eq' {X = X} IH = L-fix X
≡⟨ L-fix-unfold ⟩
((X ⊎ (▹ (L-fix X))))
≡⟨ (λ i -> X ⊎ (▸ λ t -> IH t i)) ⟩
((X ⊎ (▹ (L X))))
≡⟨ sym L-unfold ⟩
L X ∎
-}
-- Note: ▸ (λ t -> L-fix X ≡ L X) is equivalent to ▸ (next (L-fix X ≡ L X))
-- which is equivalent to ▹ (L-fix X ≡ L X)
...
...
@@ -128,17 +153,68 @@ L-fix-eq' {X = X} IH = L-fix X ≡⟨ L-fix-unfold ⟩
-- (X ⊎ (▸ λ t -> L-fix X)) ≡ (X ⊎ (▸ λ t -> L X)) i.e.
-- (X ⊎ (▹ L-fix X)) ≡ (X ⊎ (▹ L X))
-- Same proof as above, but has better definitional behavior
L-fix-eq' : {X : Type ℓ} -> ▸ (λ t -> (L-fix X ≡ L X)) -> L-fix X ≡ L X
L-fix-eq' {X = X} IH =
L-fix-unfold ∙
(λ i -> X ⊎ (▸ λ t → IH t i)) ∙
sym L-unfold
L-fix-eq : {X : Type ℓ} -> L-fix X ≡ L X
L-fix-eq = fix L-fix-eq'
L-fix-iso : {X : Type ℓ} -> Iso (L-fix X) (L X)
L-fix-iso = pathToIso L-fix-eq
-- Action of the above isomorphism
L-fix-iso-η : {X : Type ℓ} (x : X) ->
transport L-fix-unfold (transport⁻ L-fix-eq (η x)) ≡ inl x
L-fix-iso-η {X = X} x =
let eq = (λ i -> X ⊎ (▸_ {k = k} λ t → L-fix-eq {X = X} i)) in
transport L-fix-unfold (transport⁻ L-fix-eq (η x))
≡⟨ (λ i -> transport L-fix-unfold (transport⁻ (fix-eq L-fix-eq' i) (η x))) ⟩
transport L-fix-unfold (transport⁻ (L-fix-eq' (next L-fix-eq)) (η x))
≡⟨ refl ⟩
transport L-fix-unfold
(transport⁻ (L-fix-unfold ∙ eq ∙ sym L-unfold) (η x))
≡⟨ ((λ i -> transport L-fix-unfold {!!})) ⟩
transport L-fix-unfold
((transport⁻ L-fix-unfold ∘
transport⁻ eq ∘
transport⁻ (sym L-unfold)) (η x))
≡⟨ transportTransport⁻ L-fix-unfold _ ⟩
(transport⁻ eq ∘ transport⁻ (sym L-unfold)) (η x)
≡⟨ sym (transportComposite L-unfold (sym eq) (η x)) ⟩
(transport⁻ (eq ∙ (sym L-unfold))) (η x)
≡⟨ refl ⟩
(transport (L-unfold ∙ sym eq)) (η x)
≡⟨ transportComposite L-unfold (sym eq) (η x) ⟩
((transport (sym eq)) ∘ (transport L-unfold)) (η x)
≡⟨ {!!} ⟩
(transport (sym (λ i -> X ⊎ (▸_ {k = k} λ t → L-fix-eq {X = X} i)))) (inl x)
≡⟨ {!!} ⟩
inl x ∎
{-
Iso-L-fix : {X : Type ℓ} -> Iso (L-fix X) (L X)
Iso-L-fix {X = X} = iso to inv sec {!!}
...
...
@@ -170,8 +246,6 @@ Iso-L-fix {X = X} = iso to inv sec {!!}
-- Similar to caseNat,
-- defined at https://agda.github.io/cubical/Cubical.Data.Nat.Base.html#487
caseL℧ : {X : Type ℓ} -> {A : Type ℓ'} -> (aη a℧ aθ : A) → L℧ X → A
...
...
@@ -196,6 +270,22 @@ caseL℧ a0 a℧ aθ (θ lx~) = aθ
-- Similar to caseNat,
-- defined at https://agda.github.io/cubical/Cubical.Data.Nat.Base.html#487
caseL : {X : Type ℓ} -> {A : Type ℓ'} -> (aη aθ : A) → L X → A
caseL aη aθ (η x) = aη
caseL a0 aθ (θ lx~) = aθ
-- Similar to znots and snotz, defined at
-- https://agda.github.io/cubical/Cubical.Data.Nat.Properties.html
Lη≠Lθ : {X : Type ℓ} -> {x : X} -> {lx~ : ▹ (L X)} -> ¬ (L.η x ≡ θ lx~)
Lη≠Lθ {X = X} {x = x} {lx~ = lx~} eq =
rec* (subst (caseL X ⊥*) eq x) -- subst (caseL℧ X ⊥ ⊥) eq x
-- Injectivity results for lift with error
-- TODO: Does this make sense?
pred : {X : Type ℓ} -> (lx : L℧ X) -> ▹ (L℧ X)
...
...
@@ -218,12 +308,37 @@ inj-θ lx~ ly~ H = let lx~≡ly~ = cong pred H in
λ t i → lx~≡ly~ i t
-- Monadic structure
-- Injectivity results for Lift
η-inv : {X : Type ℓ} -> L X -> X -> X
η-inv (η x) y = x
η-inv (θ lx~) y = y
inj-η : {X : Type ℓ} (x y : X) ->
L.η x ≡ L.η y ->
x ≡ y
inj-η x y H = λ i -> η-inv (H i) x -- also works: η-inv (H i) y
-----------------------
-- Monadic structure --
-----------------------
retL : {X : Type ℓ} -> X -> L℧ X
retL = η
extL' : (A -> L B) -> ▹ (L A -> L B) -> L A -> L B
extL' f rec (η a) = f a
extL' f rec (θ la~) = θ (rec ⊛ la~)
extL : (A -> L B) -> L A -> L B
extL f = fix (extL' f)
ret : {X : Type ℓ} -> X -> L℧ X
ret = η
ext' : (A -> L℧ B) -> ▹ (L℧ A -> L℧ B) -> L℧ A -> L℧ B
ext' f rec (η x) = f x
ext' f rec ℧ = ℧
...
...
@@ -312,7 +427,7 @@ monad-assoc : {A B C : Type} -> (f : A -> L℧ B) (g : B -> L℧ C) (la : L℧ A
monad-assoc = {!!}
{-
ext-comp-ret : (f : L℧ A -> L℧ B) (a : A) (n : ℕ) ->
ext (f ∘ ret) ((δ ^ n) (η a)) ≡ (δ ^ n) (f (η a))
ext-comp-ret f a zero = ext-eta a (f ∘ ret)
...
...
@@ -326,6 +441,24 @@ ext-comp-ret f a (suc n) =
δ (ext (f ∘ ret) ((δ ^ n) (η a)))
≡⟨ cong δ (ext-comp-ret f a n) ⟩
δ ((δ ^ n) (f (η a))) ∎
-}
ext-comp-ret : (f : L℧ A -> L℧ B) (a : A) (n : ℕ) ->
ext (f ∘ ret) ((δ ^ n) (η a)) ≡ f ((δ ^ n) (η a))
ext-comp-ret f a zero = ext-eta a (f ∘ ret)
ext-comp-ret f a (suc n) =
ext (f ∘ ret) (δ ((δ ^ n) (η a)))
≡⟨ ext-theta (f ∘ ret) _ ⟩
θ (ext (f ∘ ret) <$> (next ((δ ^ n) (η a))))
≡⟨ refl ⟩
θ (λ t -> ext (f ∘ ret) (next ((δ ^ n) (η a)) t))
≡⟨ refl ⟩
δ (ext (f ∘ ret) ((δ ^ n) (η a)))
≡⟨ cong δ (ext-comp-ret f a n) ⟩
δ (f ((δ ^ n) (η a)))
≡⟨ {!!} ⟩
f (δ ((δ ^ n) (η a))) ∎
-- Need f to preserve ℧ and preserve θ...
...
...
@@ -521,3 +654,28 @@ theta-delta-n-comm lx~ (suc n) =
≡⟨ cong δ (theta-delta-n-comm lx~ n) ⟩
δ ((δ ^ n) (θ lx~)) ∎
L▹X→▹LX' : {X : Type ℓ} ->
▹ (L℧ (▹ X) -> ▹ (L℧ X)) ->
(L℧ (▹ X) -> ▹ (L℧ X))
L▹X→▹LX' _ (η x~) t = η (x~ t)
L▹X→▹LX' _ ℧ t = ℧
L▹X→▹LX' rec (θ lx~) t = θ (rec t (lx~ t))
L▹X→▹LX : {X : Type ℓ} ->
L℧ (▹ X) -> ▹ (L℧ X)
L▹X→▹LX = fix L▹X→▹LX'
-- Doesn't seem that we can write the above function
-- using mapL:
-- The following vars are not allowed in a later value applied to t : [x~]
-- when checking that the expression x~ t has type X
{-
test' : {X : Type ℓ} ->
(L℧ (▹ X) -> ▹ (L℧ X))
test' l t = mapL f l
where
f : ▹ _ → _
f x~ = {!x~ t!}
-}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment