Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
0a8d2b96
Commit
0a8d2b96
authored
2 years ago
by
Max S. New
Browse files
Options
Downloads
Patches
Plain Diff
weaken the assumption to apply to the weak bisimulation rel
parent
bc9fc01b
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/ErrorDomains.agda
+18
-4
18 additions, 4 deletions
formalizations/guarded-cubical/ErrorDomains.agda
with
18 additions
and
4 deletions
formalizations/guarded-cubical/ErrorDomains.agda
+
18
−
4
View file @
0a8d2b96
...
...
@@ -76,10 +76,24 @@ trivialize' hθ IH lx =
θ (next (fix θ)) ≡⟨ sym (fix-eq θ) ⟩
(fix θ ∎)
-- trivialize : {X : Set} ->
-- ((lx : L℧ X) -> θ (next lx) ≡ lx) ->
-- ((lx : L℧ X) -> (lx ≡ fix θ))
-- trivialize hθ = fix (trivialize' hθ)
trivialize : {X : Set} ->
((lx : L℧ X) -> lx ≡ θ (next lx)) ->
((lx : L℧ X) -> (lx ≡ fix θ))
trivialize hθ = fix (trivialize' hθ)
-- A slightly stronger version (i.e. a weaker assumption)
-- This applies to the weak bisimulation relation in Mogelberg-Paviotti
trivialize_quotient_stronger : ∀ {X} ->
(∀ x -> η x ≡ θ (next (η x))) ->
(x : X) -> η x ≡ fix θ
trivialize_quotient_stronger {X} hθ = fix rec
where rec : ▹ ((x : X) -> η x ≡ fix θ) → (x : X) -> η x ≡ fix θ
rec IH x =
η x ≡⟨ hθ x ⟩
θ (next (η x)) ≡⟨ (λ i → θ (λ t → IH t x i)) ⟩
θ (next (fix θ)) ≡⟨ sym (fix-eq θ) ⟩
(fix θ ∎)
-- We can prove a similar fact for an arbitrary relation R,
-- so long as it is symmetric, transitive, and a congruence
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment