Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
{-# OPTIONS --cubical --rewriting --guarded #-}
{-# OPTIONS --guardedness #-}
{-# OPTIONS -W noUnsupportedIndexedMatch #-}
module Results.DelayCoalgebra where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Data.Sum
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Functions.Embedding
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Unit renaming (Unit to ⊤)
open import Cubical.Foundations.Isomorphism
import Cubical.Data.Equality as Eq
open import Results.Delay
private
variable
ℓ : Level
module _ (X : Type ℓ) (isSetX : isSet X) where
record Coalg (ℓc : Level) : Type (ℓ-suc (ℓ-max ℓ ℓc)) where
field
V : Type ℓc
un : V -> (X ⊎ V)
liftSum : {ℓA ℓB : Level} -> {A : Type ℓA} -> {B : Type ℓB} ->
(A -> B) -> (X ⊎ A) -> (X ⊎ B)
liftSum f (inl x) = inl x
liftSum f (inr a) = inr (f a)
open Coalg
{-
record CoalgMorphism {ℓ1 ℓ2 : Level} (c : Coalg ℓ1) (d : Coalg ℓ2) :
Type (ℓ-max ℓ (ℓ-max ℓ1 ℓ2)) where
field
f : c .V -> d .V
com : d .un ∘ f ≡ liftSum f ∘ c .un
-}
CoalgMorphism : {ℓ1 ℓ2 : Level} (c : Coalg ℓ1) (d : Coalg ℓ2) ->
Type (ℓ-max (ℓ-max ℓ ℓ1) ℓ2)
CoalgMorphism c d = Σ[ h ∈ (c .V -> d .V) ]
d .un ∘ h ≡ liftSum h ∘ c .un
final-coalgebra : ∀ {ℓd : Level} -> Coalg ℓd ->
Type (ℓ-max (ℓ-suc ℓ) (ℓ-suc ℓd))
final-coalgebra {ℓd} d = ∀ (c : Coalg ℓd) -> isContr (CoalgMorphism c d)
-- Doesn't work: {ℓc : Level} -> (c : Coalg ℓc) -> isContr (CoalgMorphism c d)
inl≠inr : ∀ {ℓ ℓ' : Level} {A : Type ℓ} {B : Type ℓ'} ->
(a : A) (b : B) -> inl a ≡ inr b -> ⊥
inl≠inr {_} {_} {A} {B} a b eq = transport (cong (diagonal ⊤ ⊥) eq) tt
where
diagonal : (Left Right : Type) -> (A ⊎ B) -> Type
diagonal Left Right (inl a) = Left
diagonal Left Right (inr b) = Right
unfold-delay : Delay X -> X ⊎ Delay X
unfold-delay d with (view d)
... | done x = inl x
... | running d' = inr d'
unfold-delay-inv : X ⊎ Delay X -> Delay X
unfold-delay-inv (inl x) .view = done x
unfold-delay-inv (inr d) .view = running d
-- Might be able to simplify this because d .view is isomorphic to X + Delay X
delay-iso-sum : Iso (Delay X) (X ⊎ Delay X)
delay-iso-sum = iso unfold-delay unfold-delay-inv sec retr
where
sec : section unfold-delay unfold-delay-inv
sec (inl x) = refl
sec (inr d) = refl
retr : retract unfold-delay unfold-delay-inv
retr d i .view with d .view
... | done x = done x
... | running d' = running d'
unfold-delay-inj : (d1 d2 : Delay X) ->
unfold-delay d1 ≡ unfold-delay d2 -> d1 ≡ d2
unfold-delay-inj d1 d2 eq = isoFunInjective delay-iso-sum d1 d2 eq
unfold-inv1 : (d : Delay X) -> (x : X) ->
unfold-delay d ≡ inl x -> d .view ≡ done x
unfold-inv1 d x H =
cong view (isoFunInjective delay-iso-sum d (doneD x) H)
unfold-inv2 : (d : Delay X) -> (d' : Delay X) ->
unfold-delay d ≡ inr d' -> d .view ≡ running d'
unfold-inv2 d d' H = cong view (isoFunInjective delay-iso-sum d (stepD d') H)
DelayCoalg : Coalg ℓ
DelayCoalg = record {
V = Delay X ;
un = unfold-delay }
DelayCoalgFinal : {ℓc : Level} -> (c : Coalg ℓ) ->
isContr (Σ[ h ∈ (c .V -> Delay X) ] unfold-delay ∘ h ≡ liftSum h ∘ c. un) -- isContr (CoalgMorphism c DelayCoalg)
DelayCoalgFinal c =
(fun , (funExt commute)) , {!!}
where
fun : c .V -> Delay X
view (fun v) with c .un v
... | inl x = done x
... | inr v' = running (fun v')
commute : (v : c. V) -> (DelayCoalg .un ∘ fun) v ≡ (liftSum fun ∘ c .un) v
commute v with c. un v
... | inl x = refl
... | inr v' = refl
unique' : (s s' : Σ[ h ∈ (c .V → Delay X) ]
(unfold-delay ∘ (h) ≡ liftSum h ∘ (c .un))) ->
s ≡ s'
unique' (h , com) (h' , com') = {!!}
-- Σ≡Prop (λ g -> isPropΠ (λ v -> {!!})) (funExt eq-fun)
where
eq-fun : (v : c .V) -> h v ≡ h' v
view (eq-fun v i) with c .un v in eq
... | inl x = view (unfold-delay-inj (h v) (h' v) (com-v ∙ sym com'-v) i)
where
com-v : (unfold-delay (h v)) ≡ inl x
com-v = funExtS⁻ com v ∙ (λ j -> liftSum h (Eq.eqToPath eq j))
com'-v : (unfold-delay (h' v)) ≡ inl x
com'-v = funExtS⁻ com' v ∙ (λ j -> liftSum h' (Eq.eqToPath eq j))
... | inr v' = (goal (h v .view) (h' v .view)
(Eq.pathToEq eq-hv) (Eq.pathToEq eq-h'v) i)
-- We state an auxiliary goal to which we pass the equalities eq-hv and eq-h'v
-- as the built-in equality type so we can pattern match.
-- If we tried to use transport instead, the termination checker would complain.
where
com-v : unfold-delay (h v) ≡ inr (h v')
com-v = funExtS⁻ com v ∙ λ j -> liftSum h (Eq.eqToPath eq j)
com'-v : unfold-delay (h' v) ≡ inr (h' v')
com'-v = funExtS⁻ com' v ∙ λ j -> liftSum h' (Eq.eqToPath eq j)
eq-hv : h v .view ≡ running (h v')
eq-hv = unfold-inv2 (h v) (h v') com-v
eq-h'v : h' v .view ≡ running (h' v')
eq-h'v = unfold-inv2 (h' v) (h' v') com'-v
goal : ∀ s1 s2 ->
s1 Eq.≡ running (h v') ->
s2 Eq.≡ running (h' v') ->
s1 ≡ s2
goal .(running (h v')) .(running (h' v')) Eq.refl Eq.refl =
cong running (eq-fun v')
{-
unique : (s : Σ[ h' ∈ (c .V → Delay X) ] (unfold-delay ∘ h' ≡ liftSum h' ∘ c .un)) →
(fun , funExt commute) ≡ s
unique (h' , com') = Σ≡Prop (λ g -> isSetΠ (λ v -> isSet⊎ isSetX (isSetDelay isSetX)) _ _) (funExt aux)
where
-- aux : (v : c .V) → fun v ≡ h' v
-- aux v with c .un v
-- ... | inl x = λ i -> {!!}
-- ... | inr x = {!!}
aux : (v : c .V) → fun v ≡ h' v
view (aux v i) with c. un v in eq
... | inl x =
let com-v = funExtS⁻ com' v in
let eq' = lem1 (view (h' v)) x
(com-v ∙ λ j -> liftSum h' (Eq.eqToPath eq j)) in
sym eq' i
... | inr v' =
let com-v = funExtS⁻ com' v in
{-let eq' = lem2 (view (h' v)) (fun v')
(com-v ∙ (λ j -> liftSum h' (Eq.eqToPath eq j)) ∙ cong inr (sym (aux v'))) in
sym eq' i -}
view (goal _ eq {!!})
where
goal : ∀ w -> w Eq.≡ inr v' -> (fun v') ≡ (h' v')
goal w Eq.refl = λ j -> (aux v' j) -- view (aux v')
-}
-- NTS: liftSum h' (c .un v) ≡ inr (fun v')
-- Have : c .un v Eq.≡ inr v'
--
-- Substituting, NTS:
-- liftSum h' (inr v') ≡ inr (fun v')
-- i.e.
-- inr (h' v') ≡ inr (fun v')
-- i.e.
-- h' v' ≡ fun v'