Newer
Older
import numpy as np
import scipy.interpolate
from numbers import Number
np.seterr(all='raise')
from .numbaSpecialFns import numba_gammaln as gammaln
from .numbaSpecialFns import numba_hyp2f1 as hyp2f1
from .numbaSpecialFns import numba_betainc as betainc
# from scipy.special import gammaln, hyp2f1, hyp1f1
import matplotlib.pyplot as plt; plt.ion()
from scipy.integrate import quad
from scipy.stats import t as scipy_trv
from numba import cfunc
from scipy.optimize import minimize
import warnings
import scipy.io as sio
import scipy
from .root_finding import newton, brentq
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
plt.close('all')
from numba import vectorize, njit
import numba as nb
@njit
def tcdf_1d(x, df):
# if use_scipy:
# # Scipy-computed tcdf vals
# scipy_tcdf_vals = scipy_trv.cdf(x, df)
# return scipy_tcdf_vals
# else:
# A = gammaln((df+1.)/2.)
# B = hyp2f1(0.5, (df+1.)/2., 1.5, -x**2 / df)
#
#
# # BA = hyp1f1(0.5, 1.5, -x**2)
# C = np.sqrt(np.pi * df)
# D = gammaln(df/2.)
#
# tcdf_vals = 0.5 + x * B * np.exp(A - D) / C
tcdf_vals_v2 = 0.5 * betainc(0.5 * df, 0.5, df / (df + x**2))
inds = x > 0
tcdf_vals_v2[inds] = 1 - tcdf_vals_v2[inds]
return tcdf_vals_v2
def tspdf_1d_scipy(x, loc, scale, df, skew):
z = (x - loc)/np.sqrt(scale)
return 2 * scipy_trv.pdf(z, df + 1) * scipy_trv.cdf(skew * z, df + 1)
@njit
def tspdf_1d(x, loc, scale, df, skew):
return np.exp(tslogpdf_1d(x, loc, scale, df, skew))
@njit
def tslogpdf_1d(x, loc, scale, df, skew):
dim = 1
vals, vecs = scale, np.array([1])
logdet = np.log(scale)
valsinv = np.array([1./vals])
U = vecs * np.sqrt(valsinv)
dev = x - loc
maha = np.square(dev * U)
t = 0.5 * (df + dim)
A = gammaln(t)
B = gammaln(0.5 * df)
C = (dim/2.) * np.log(df * np.pi)
D = 0.5 * logdet
E = -t * np.log(1 + (1./df) * maha)
w = np.sqrt(scale)
J = dev * skew / w
# Old definition -- this works
# J = dev * skew
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
rad = np.sqrt((dim + df) / (maha + df))
Fval = tcdf_1d(J * rad, dim + df)
F = np.log(2) + np.log(Fval)
return A - B - C - D + E + F
def sampleCvM(dataSort, CDF):
N = len(dataSort)
CDF_vals = CDF(dataSort)
empirical_CDF = np.linspace(1, 2*N - 1, 2) / (2 * N)
diff_CDFs = CDF_vals - empirical_CDF
CvM = 1/(12 * N) + np.sum(diff_CDFs ** 2)
def getIntegrand(loc, scale, df, skew):
@njit(cache=True)
def integrand(y):
return tspdf_1d(y, loc, scale, df, skew)[0]
return integrand
# def tscdf(x, loc, scale, df, skew):
# tscdf_vals = np.zeros_like(x)
#
# integrand = getIntegrand(loc, scale, df, skew)
# nb_integrand = cfunc("float64(float64)")(integrand)
# for index, upper_limit in enumerate(x):
# # integral_val, abs_err = quad(lambda y: tspdf_1d(y, loc, scale, df, skew), -np.inf, upper_limit, epsrel = 1e-4)
# integral_val, abs_err = quad(nb_integrand.ctypes, -np.inf, upper_limit)
#
# tscdf_vals[index] = integral_val
#
#
# return tscdf_vals
def tscdf(x, loc, scale, df, skew):
if isinstance(x, Number):
x = np.array([x])
integrand = getIntegrand(loc, scale, df, skew) # Closure that captures the parameters of the distribution
nb_integrand = cfunc("float64(float64)")(integrand) # Convert it cfunc for faster integration
with warnings.catch_warnings():
warnings.simplefilter("ignore")
if len(x) == 1:
tscdf_vals = quad(nb_integrand.ctypes, -np.inf, x)[0]
else:
partial_integrals = np.zeros_like(x)
partial_integrals[0] = quad(nb_integrand.ctypes, -np.inf, x[0])[0]
sliding_windows = np.lib.stride_tricks.sliding_window_view(x, 2)
for index, window in enumerate(sliding_windows):
integral_val, abs_err = quad(nb_integrand.ctypes, window[0], window[1])
partial_integrals[index + 1] = integral_val
tscdf_vals = np.cumsum(partial_integrals)
# for index, upper_limit in enumerate(x):
# # integral_val, abs_err = quad(lambda y: tspdf_1d(y, loc, scale, df, skew), -np.inf, upper_limit, epsrel = 1e-4)
# integral_val, abs_err = quad(nb_integrand.ctypes, -np.inf, upper_limit)
#
# tscdf_vals[index] = integral_val
return tscdf_vals
def getObjectiveFunction(data, use_loglikelihood = False):
sorted_data = np.sort(data)
N = len(data)
def objFun(theta):
loc = theta[0]
scale = theta[1]
df = theta[2]
skew = theta[3]
tscdf_vals = tscdf(sorted_data, loc, scale, df, skew)
empirical_CDF = np.arange(1, 2 * N , 2) / (2 * N)
diff_CDFs = tscdf_vals - empirical_CDF
CvM = 1 / (12 * N) + np.sum(diff_CDFs ** 2)
return CvM
@njit
def loglikelihood(theta):
loc = theta[0]
scale = theta[1]
df = theta[2]
skew = theta[3]
llvals = tslogpdf_1d(sorted_data, loc, scale, df, skew)
return -np.mean(llvals)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
if use_loglikelihood:
return loglikelihood
else:
return objFun
@njit
def root_Newton_Rhapson(fun, x0, jac, tol=1e-12, maxiter=100):
for _ in range(maxiter):
fval = fun(x0)
if np.abs(fval) < tol:
x1 = x0
break
fder = jac(x0)
newton_step = fval / fder
x1 = x0 - newton_step
if np.abs(x1) < tol:
break
x0 = x1
return x1
def ts_invcdf_opt(q, loc, scale, df, skew):
def ffun(x):
return tscdf(x, loc, scale, df, skew) - q
def fprime(x):
return tspdf_1d(x, loc, scale, df, skew)
# Do a single Newton iteration
p0 = 0.0
fval = ffun(p0)
fder = fprime(p0)
newton_step = fval / fder
# Newton step
p = p0 - newton_step
while ffun(p) * fval > 0:
p = p - newton_step
xvals = np.linspace(-20, 20, 1_000)
# r = newton(func = f, x0 = 0.0, fprime = fprime)
return r
def ts_invcdf(quantiles, loc, scale, df, skew):
try:
roots = np.zeros_like(quantiles)
for count, q in enumerate(quantiles):
r = ts_invcdf_opt(q, loc, scale, df, skew)
pass
except:
pass
pass
def numerical_inverse(rv_domain, cdf_vals):
return scipy.interpolate.interp1d(cdf_vals, rv_domain, kind='cubic', fill_value="extrapolate")
# def inv_fn(x):
# # Want inputs to be numbers between zero and one
# # sampled_data = np.interp(x, cdf_vals, rv_domain)
#
# # return sampled_data
#
# return inv_fn
def tskew_moments(loc, scale, df, skew):
w = np.sqrt(scale)
alpha = skew
omega = scale
omega_bar = scale / (w * w)
delta = (alpha * omega_bar) / np.sqrt(1 + alpha * omega_bar * alpha)
gamma_div = np.exp(gammaln(0.5 * (df -1)) - gammaln(0.5 * df))
mu = delta * np.sqrt(df / np.pi) * gamma_div
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
expected_value_zero_loc = omega * mu
expected_value = expected_value_zero_loc + loc
second_moment = w**2 * (df / (df - 2))
variance = second_moment - expected_value_zero_loc**2
skew_f1 = mu
skew_f2 = (df * (3 - delta**2) / (df - 3) - 3*df/(df - 2) + 2*mu**2)
skew_f3 = np.power(df/(df - 2) - mu**2, -3/2)
skewness = skew_f1 * skew_f2 * skew_f3
kurt_f1_s1 = 3 * df**2 / ((df - 2) * (df-4))
kurt_f1_s2 = -(4 * mu**2 * df * (3 - delta**2) / (df - 3))
kurt_f1_s3 = 6 * mu**2 * df/(df -2)
kurt_f1_s4 = -3*mu**4
kurt_f1 = kurt_f1_s1 + kurt_f1_s2 + kurt_f1_s3 + kurt_f1_s4
kurt_f2_s1 = df/(df - 2)
kurt_f2_s2 = -mu**2
kurt_f2 = np.power(kurt_f2_s1 + kurt_f2_s2, -2)
kurtosis = kurt_f1*kurt_f2 - 3
return expected_value, variance, skewness, kurtosis
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
if __name__ == '__main__':
x = np.linspace(-6, 6, 1_000)
# res = tcdf_1d(x, 3)
# fig, axs = plt.subplots(1, 3, sharex=True)
# for df in [1, 2, 5, 100]:
# p = tspdf_1d(x, 0, 1, df, skew = 0)
# axs[0].plot(x, p)
#
# for s in [1, 2, 5, 10]:
# p = tspdf_1d(x, 0, s, 2, xi = 0)
# axs[1].plot(x, p)
#
# for xi in [0, -1, -2, -5, -5000]:
# p = tspdf_1d(x, 0, 1, 2, xi)
# axs[2].plot(x, p)
#
# p_ev = tspdf_1d(x, 0.5, 2, 3, 5)
# fig, axs = plt.subplots(1, 2)
# axs[0].plot(p_ev, label = 'Erick')
# ef_integral = quad(lambda x: tspdf_1d(x, 0.5, 2, 3, 5), -np.inf, np.inf)
loc = 1
scale = 2
df = 5
skew = 1
q = 0.5
tslogpdf_1d(q, loc, scale, df, skew)
N = 1_000
xvals = np.linspace(-10, 10, N)
cdf = tscdf(xvals, loc, scale, df, skew )
pdf = tspdf_1d(xvals, loc, scale, df, skew)
invcdf = numerical_inverse(xvals, cdf)
uniform_realization = np.random.rand(N)
skewt_realization = invcdf(uniform_realization)
# logpdf = tslogpdf_1d(x, loc, scale, df, skew)
# t = timeit.Timer(partial(tscdf, x, loc, scale, df, skew))
# print(t.timeit(1))
cdf = tscdf(x+2, loc, scale, df, skew)
# plt.figure()
# plt.plot(x, cdf)
theta = np.array([loc + 0.2, scale - 1, df+2, skew-2])
test_data = sio.loadmat('/home/efvega/data/copulaTesting/2d_data.mat')['data'][1, :]
obj_fun = getObjectiveFunction(skewt_realization, use_loglikelihood=False)
obj_fun(theta)
def callbackF(theta):
print(theta)
res = minimize(getObjectiveFunction(skewt_realization, use_loglikelihood=True), x0 = theta, callback=callbackF, method='Nelder-Mead')
print('Now switching')
# res = minimize(getObjectiveFunction(skewt_realization, use_loglikelihood=False), x0 = res.x, callback=callbackF, method='Nelder-Mead')
est_pdf = tspdf_1d(xvals, res.x[0], res.x[1], res.x[2], res.x[3])
plt.hist(skewt_realization, bins = 50, density=True)
plt.plot(xvals, est_pdf, linestyle = '--')
plt.plot(xvals, pdf)
# print(res_initial.x)
print(res.x)
# integrand = getIntegrand(loc, scale, df, skew)
# nb_integrand = cfunc("float64(float64)")(integrand)