/******************************************************************************* "A Collection of Useful C++ Classes for Digital Signal Processing" By Vincent Falco Official project location: http://code.google.com/p/dspfilterscpp/ See Documentation.cpp for contact information, notes, and bibliography. -------------------------------------------------------------------------------- License: MIT License (http://www.opensource.org/licenses/mit-license.php) Copyright (c) 2009 by Vincent Falco Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *******************************************************************************/ #include "Common.h" #include "PoleFilter.h" namespace Dsp { //------------------------------------------------------------------------------ complex_t LowPassTransform::transform (complex_t c) { if (c == infinity()) return complex_t (-1, 0); // frequency transform c = f * c; // bilinear low pass transform return (1. + c) / (1. - c); } LowPassTransform::LowPassTransform (double fc, LayoutBase& digital, LayoutBase const& analog) { digital.reset (); // prewarp f = tan (doublePi * fc); const int numPoles = analog.getNumPoles (); const int pairs = numPoles / 2; for (int i = 0; i < pairs; ++i) { const PoleZeroPair& pair = analog[i]; digital.addPoleZeroConjugatePairs (transform (pair.poles.first), transform (pair.zeros.first)); } if (numPoles & 1) { const PoleZeroPair& pair = analog[pairs]; digital.add (transform (pair.poles.first), transform (pair.zeros.first)); } digital.setNormal (analog.getNormalW(), analog.getNormalGain()); } //------------------------------------------------------------------------------ complex_t HighPassTransform::transform (complex_t c) { if (c == infinity()) return complex_t (1, 0); // frequency transform c = f * c; // bilinear high pass transform return - (1. + c) / (1. - c); } HighPassTransform::HighPassTransform (double fc, LayoutBase& digital, LayoutBase const& analog) { digital.reset (); // prewarp f = 1. / tan (doublePi * fc); const int numPoles = analog.getNumPoles (); const int pairs = numPoles / 2; for (int i = 0; i < pairs; ++i) { const PoleZeroPair& pair = analog[i]; digital.addPoleZeroConjugatePairs (transform (pair.poles.first), transform (pair.zeros.first)); } if (numPoles & 1) { const PoleZeroPair& pair = analog[pairs]; digital.add (transform (pair.poles.first), transform (pair.zeros.first)); } digital.setNormal (doublePi - analog.getNormalW(), analog.getNormalGain()); } //------------------------------------------------------------------------------ BandPassTransform::BandPassTransform (double fc, double fw, LayoutBase& digital, LayoutBase const& analog) { // handle degenerate cases efficiently // THIS DOESNT WORK because the cascade states won't match #if 0 const double fw_2 = fw / 2; if (fc - fw_2 < 0) { LowPassTransform::transform (fc + fw_2, digital, analog); } else if (fc + fw_2 >= 0.5) { HighPassTransform::transform (fc - fw_2, digital, analog); } else #endif digital.reset (); const double ww = 2 * doublePi * fw; // pre-calcs wc2 = 2 * doublePi * fc - (ww / 2); wc = wc2 + ww; // what is this crap? if (wc2 < 1e-8) wc2 = 1e-8; if (wc > doublePi-1e-8) wc = doublePi-1e-8; a = cos ((wc + wc2) * 0.5) / cos ((wc - wc2) * 0.5); b = 1 / tan ((wc - wc2) * 0.5); a2 = a * a; b2 = b * b; ab = a * b; ab_2 = 2 * ab; const int numPoles = analog.getNumPoles (); const int pairs = numPoles / 2; for (int i = 0; i < pairs; ++i) { const PoleZeroPair& pair = analog[i]; ComplexPair p1 = transform (pair.poles.first); ComplexPair z1 = transform (pair.zeros.first); // // Optimize out the calculations for conjugates for Release builds // #ifndef NDEBUG ComplexPair p2 = transform (pair.poles.second); ComplexPair z2 = transform (pair.zeros.second); assert (p2.first == std::conj (p1.first)); assert (p2.second == std::conj (p1.second)); #endif digital.addPoleZeroConjugatePairs (p1.first, z1.first); digital.addPoleZeroConjugatePairs (p1.second, z1.second); } if (numPoles & 1) { ComplexPair poles = transform (analog[pairs].poles.first); ComplexPair zeros = transform (analog[pairs].zeros.first); digital.add (poles, zeros); } double wn = analog.getNormalW(); digital.setNormal (2 * atan (sqrt (tan ((wc + wn)* 0.5) * tan((wc2 + wn)* 0.5))), analog.getNormalGain()); } ComplexPair BandPassTransform::transform (complex_t c) { if (c == infinity()) return ComplexPair (-1, 1); c = (1. + c) / (1. - c); // bilinear complex_t v = 0; v = addmul (v, 4 * (b2 * (a2 - 1) + 1), c); v += 8 * (b2 * (a2 - 1) - 1); v *= c; v += 4 * (b2 * (a2 - 1) + 1); v = std::sqrt (v); complex_t u = -v; u = addmul (u, ab_2, c); u += ab_2; v = addmul (v, ab_2, c); v += ab_2; complex_t d = 0; d = addmul (d, 2 * (b - 1), c) + 2 * (1 + b); return ComplexPair (u/d, v/d); } //------------------------------------------------------------------------------ BandStopTransform::BandStopTransform (double fc, double fw, LayoutBase& digital, LayoutBase const& analog) { digital.reset (); const double ww = 2 * doublePi * fw; wc2 = 2 * doublePi * fc - (ww / 2); wc = wc2 + ww; // this is crap if (wc2 < 1e-8) wc2 = 1e-8; if (wc > doublePi-1e-8) wc = doublePi-1e-8; a = cos ((wc + wc2) * .5) / cos ((wc - wc2) * .5); b = tan ((wc - wc2) * .5); a2 = a * a; b2 = b * b; const int numPoles = analog.getNumPoles (); const int pairs = numPoles / 2; for (int i = 0; i < pairs; ++i) { const PoleZeroPair& pair = analog[i]; ComplexPair p = transform (pair.poles.first); ComplexPair z = transform (pair.zeros.first); // // Optimize out the calculations for conjugates for Release builds // #ifdef NDEBUG // trick to get the conjugate if (z.second == z.first) z.second = std::conj (z.first); #else // Do the full calculation to verify correctness ComplexPair pc = transform (analog[i].poles.second); ComplexPair zc = transform (analog[i].zeros.second); // get the conjugates into pc and zc if (zc.first == z.first) std::swap (zc.first, zc.second); assert (pc.first == std::conj (p.first)); assert (pc.second == std::conj (p.second)); assert (zc.first == std::conj (z.first)); assert (zc.second == std::conj (z.second)); #endif digital.addPoleZeroConjugatePairs (p.first, z.first); digital.addPoleZeroConjugatePairs (p.second, z.second); } if (numPoles & 1) { ComplexPair poles = transform (analog[pairs].poles.first); ComplexPair zeros = transform (analog[pairs].zeros.first); digital.add (poles, zeros); } if (fc < 0.25) digital.setNormal (doublePi, analog.getNormalGain()); else digital.setNormal (0, analog.getNormalGain()); } ComplexPair BandStopTransform::transform (complex_t c) { if (c == infinity()) c = -1; else c = (1. + c) / (1. - c); // bilinear complex_t u (0); u = addmul (u, 4 * (b2 + a2 - 1), c); u += 8 * (b2 - a2 + 1); u *= c; u += 4 * (a2 + b2 - 1); u = std::sqrt (u); complex_t v = u * -.5; v += a; v = addmul (v, -a, c); u *= .5; u += a; u = addmul (u, -a, c); complex_t d (b + 1); d = addmul (d, b-1, c); return ComplexPair (u/d, v/d); } }