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Information Fusion

Distributed Information Fusion
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Key Ideas

Established Results

1 A broad class of information measures - f -divergences –
are fundamentally linked to bounds on risk. Bartlett et al.
[2003], Nguyen et al. [2009]

f -divergence → φ -risk → bound on excess risk
2 submodularity – as applied to information measures – is

a key enabler. Krause and Guestrin [2005], Williams et al. [2007],
Papachristoudis and Fisher III [2012]

off-line and on-line performance bounds
guarantees on tractable planning methods
incorporations of inhomogenous resource constraints

3 Submodular properties are intimately related to the
structure of graphical models. Williams et al. [2007]

local properties (and computations) yield global properties
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Key Ideas

Key Ideas

Information planning posed as combinatorial selection
problem over sequential consideration of groups of
measurements

1 bounds apply to all sequences (visit paths)

2 information rewards vary across walks

3 evaluation of multiple walks leads to increased
information rewards with diminishing probability

4 evaluation of multiple walks leads to tighter upper
bound also with reduced probability
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Key Ideas

Some Context
Distributed Sensing
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Computational Hurdles

Evaluating information measures for complex sensors induces a computational
bottleneck.

Evaluating information measures for simple sensors and complex graphs (or
even simple graphs) induces a computational bottleneck.

Due to the branching structure (i.e.,, dependence on prior sensor actions),
optimal plans are intractable due to exponential complexity.
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VoI Inf Gain

Inference versus Information

x

z1 zk zN. . . . . .

Bayesian Inference

p(x|z1, . . . ,zk) = p(x)
p(z1|x)
p(z1)

p(z2|x)
p(z2|z1)

× . . .× p(zk|x)
p(zk|z1, . . . ,zk−1)

Information Gain

I (x;z1, . . . ,zk) = I (x;z1)+I (x;z2)− I (z1;z2)+ . . .+

complementary information︷ ︸︸ ︷
I (x;zk)− I (zk;z1, . . . ,zk−1)︸ ︷︷ ︸

common information

J. Fisher (VITALITE Annual Review 2013) 9 Sep 13 6 / 14



VoI submodularity

Submodularity

Given a set V, a real-valued function f on 2V is submodular if

f (A)+ f (B)≥ f (A∪B)+ f (A∩B) ∀A,B⊆ V.

Define the set increment function as

ρS(j), f (S∪ j)− f (S).

Equivalently, a real-valued function is submodular if

ρA(j)≥ ρB(j) ∀A⊆ B⊆ V and j /∈ B

that is, the incremental value of j is greater relative to A than to any B
which contains A.

Submodularity captures the notion of “diminishing returns”
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VoI submodularity

Submodularity

Monotonicity: A real-valued f is monotone if

f (A)≤ f (B) ;∀A⊆ B , or

ρS(j)≥ 0 ;∀j ∈ V,S⊆ V

Greedy Selection

Batch setting Sequential setting
gj = argmax

u∈V\Gj−1
ρGj−1(u) gj = argmax

u∈Vwj\Gj−1
ρGj−1(u)

The batch setting chooses from among all measurements conditioned on
previous selections.
The sequential setting is restricted to only those available at the current
node in the visit walk.
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VoI submodularity

Preliminaries

Notation

X = {X1, . . . ,Xn} denotes n latent inference variables.

Z = {Z1, . . . ,Zn} denotes n measurement vectors.

Each Zt is comprised of Nt measurements corresponding to variable Xt.

V t = {1, . . . ,Nt} indicate measurement indices, i.e., observation sets.

Zi ⊥⊥ Zj | X : Measurements are independent given X.

Reward function:

f : 2V → R : a set function that captures the value of sensing actions.

Cost function:

c : 2V → R+ : a nonnegative set function that
quantifies the cost of a subset, and
where costs are assumed to be additive over the elements of the subset.

c(S) = ∑
j∈S

cj

.
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VoI submodularity

Sequential Setting

Goal: Choose k1 from V1, . . ., kn from Vn:

O = argmax
|S1|≤k1,...|Sn|≤kn

f (S) where S =
n⋃

t=1

St and Si∩Sj = /0,∀i 6= j.
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Nt measurements for each hidden variable Xt.
Visit walk: define the M-length visit walk as the order {w1, . . . ,wM} in
which we visit observation sets V t during a selection process.
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VoI submodularity

Sequential Setting

Goal: Choose k1 from V1, . . ., kn from Vn:

O = argmax
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f (S) where S =
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Analysis specialized to Markov Chains and LQG models
Extends to trees and polytrees

J. Fisher (VITALITE Annual Review 2013) 9 Sep 13 10 / 14



VoI submodularity

Gaussian Markov Chains

We consider Gaussian Markov chains for convenience in derivations.
The underlying dynamical system is:

Xk = Ak−1Xk−1 +Vk−1

Yk = CkXk +Wk,

where X0 ∼N (x̃0, Σ̃0),Vk−1 ∼N (0,Qk−1),Wk ∼N (0,Rk).
(A Markov chain is shown in the upper right figure.)
Results can be generalized to trees and polytrees.
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VoI submodularity

Sparsity

Usually, measurements are
obtained from a small subset of
the underlying process.

A hidden variable depends only on
a restricted set of hidden variables
of the previous time point.

t = k t = k + 1
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VoI submodularity

Emprical Results
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