Project Two: Recursion

Out: June 5, 2018; Due: June 17, 2018

Motivation

This project will give you experience in writing recursive functions that operate on recursively-
defined data structures and mathematical abstractions.

Lists

A "list" is a sequence of zero or more numbers in no particular order. A list is well-formed if:

a) It is the empty list, or
b) It is an integer followed by a well-formed list.

A list is an example of a linear-recursive structure: it is "recursive" because the definition refers
to itself. It is "linear" because there is only one such reference.

Here are some examples of well-formed lists:

(123 4) // a list of four elements
(12 4) // a list of three elements

() // a list of zero element--the empty list

The file recursive.hinthe Project-Two-Related-Files.zip defines the type
list t and the following operations on lists:

bool list isEmpty(list t list);
// EFFECTS: returns true if "list" is empty, false otherwise

list t list make();
// EFFECTS: returns an empty list

list t list make(int elt, list t list);

// EFFECTS: given "list", make a new list consisting of
// the new element followed by the elements of the

// original list

int list first(list t list);
// REQUIRES: "list" is not empty

// EFFECTS: returns the first element of list

list t list rest(list t list);

// REQUIRES: "list"™ is not empty

// EFFECTS: returns the list containing all but the first
// element of list

void list print(list t list);
// MODIFIES: cout
// EFFECTS: prints "list"™ to cout

Note: 1ist firstandlist rest are both partial functions; their EFFECTS clauses are
only valid for nonempty lists. To help you write your code, these functions actually check
whether the list is empty or not--if they are passed an empty list, they fail gracefully by warning
you and exiting; if you are running your program under the debugger, it will stop at the exit point.
Note that such checking is not required! It would be perfectly acceptable to write these in such a
way that they fail quite ungracefully if passed empty lists. Note also that 1ist make is an
overloaded function. If called with no arguments, it produces an empty list. If called with an
element and a list, it combines them.

Giventhis 1ist t interface, you will write the following list processing procedures. Each of
these procedures must be recursive. For full credit, your routines must provide the correct
result and provide an implementation that is recursive. In writing these functions, you may
use only recursion and selection. You are NOT allowed to use goto, for, while, do-while; global
variables, pointers (except function pointers), and references (including constant references).

Hint: in implementing some functions recursively, you may need to define some recursive helper
functions. If you define any functions yourself (such as the recursive helper functions), be sure
to declare them "static", so that they are not visible outside this file. This will prevent any name
conflicts in case you give a function the same name as one in the test cases. (For further
information on “static” functions, please read some online tutorials/references. In the past, some
students got a zero score simply because they forgot to declare their support functions as static
functions. Be aware of this!)

Below is an example where we implement the factorial function with a recursive helper function.
Note that the function factorial helper is defined as a static function.

shineyruan
高亮

static int factorial helper (int n, int result)
// REQUIRES: n >= 0
// EFFECTS: computes result * n!
{

if (!'n) {

return result;
}
else {

return factorial helper(n-1, n*result);

int factorial (int n)

// REQUIRES: n >= 0

// EFFECTS: computes n!
{

factorial helper(n, 1);

Below are the functions you are to implement. There are a number of them, but many of
them are similar to one another, and the longest is at most tens of lines of code, including
support functions.

int size(list t list);
// EFFECTS: Returns the number of elements in "list".
// Returns zero if "list" is empty.

int sum(list t list);
// EFFECTS: Returns the sum of each element in "list".
// Returns zero if "list" is empty.

int product (list t list);
// EFFECTS: Returns the product of each element in "list".
// Returns one if "list" is empty.

int accumulate(list t 1list, int (*fn) (int, int), int base);
// REQUIRES: "fn" must be associative.

//

// EFFECTS: Returns "base" if "list" is empty.

// Returns fn(list first(list),

// accumulate (list rest(list), fn, base))
// otherwise.

//

// For example, if you have the following function:

//

// int add(int x, int y);

//

// Then the following invocation returns the sum of all elements:
//

// accumulate (1list, add, 0);

list t reverse(list t 1list);

// EFFECTS: Returns the reverse of "list".

//

// For example: the reverse of (3 2 1) is (1 2 3)

list t append(list t first, list t second);

// EFFECTS: Returns the list (first second).

//

// For example: append((2 4 6), (1 3)) gives
// the list (2 4 6 1 3).

list t filter odd(list t list);
// EFFECTS: Returns a new list containing only the elements of the

// original "list" which are odd in wvalue,
// in the order in which they appeared in list.
//

// For example, if you apply filter odd to the 1list (3 41 5 6),
// you would get the list (3 1 5).

list t filter even(list t list);
// EFFECTS: Returns a new list containing only the elements of the
// original "list" which are even in value,

// in the order in which they appeared in list.

list t filter(list t list, bool (*fn) (int));
// EFFECTS: Returns a list containing precisely the elements of "list"
// for which the predicate fn() evaluates to true, in the

// order in which they appeared in list.

//

// For example, if predicate bool odd(int a) returns true if a is odd,
// then the function filter(list, odd) has the same behavior as the
// function filter odd(list).

list t insert list(list t first, list t second, unsigned int n);
// REQUIRES: n <= the number of elements in "first".

//

// EFFECTS: Returns a list comprising the first n elements of

// "first", followed by all elements of "second",
// followed by any remaining elements of "first".
//

// For example: insert ((1 2 3), (45 6), 2)

// gives (1 245 6 3).

list t chop(list t list, unsigned int n);

// REQUIRES: "list"™ has at least n elements.

//

// EFFECTS: Returns the list equal to "list" without its last n
// elements.

Binary Trees

A binary tree is another fundamental data structure we will use in this project. A binary tree is
well-formed if:

a) It is the empty tree, or
b) It consists of an integer element (called the root element), plus two children, called the
left subtree and the right subtree, each of which is a well-formed binary tree.

Additionally, we say a binary tree is a "leaf" if and only if both of its children are the EMPTY
TREE.

The file recursive.hinProject-Two-Related-Files. zip defines the type
tree t and the following operations on trees:

bool tree isEmpty(tree t tree);

// EFFECTS: returns true if "tree" is empty, false otherwise

tree t tree make();
// EFFECTS: creates an empty tree

tree t tree make (int elt, tree t left, tree t right);
// EFFECTS: creates a new tree, with "elt" as its root element,
// "left" as its left subtree, and "right" as its right subtree

int tree elt(tree t tree);
// REQUIRES: "tree" is not empty
// EFFECTS: returns the element at the top of "tree"

tree t tree left (tree t tree);
// REQUIRES: "tree" is not empty
// EFFECTS: returns the left subtree of "tree"

tree t tree right(tree t tree);
// REQUIRES: "tree" is not empty
// EFFECTS: returns the right subtree of "tree"

vold tree print(tree t tree);

// MODIFIES: cout

// EFFECTS: prints "tree" to cout.

// Note: this uses a non-intuitive, but easy-to-print format

There are several functions you are to write for binary trees. These must be recursive, and cannot
use any looping structures. Once again, if you need to define any support functions, be sure to
define them as static functions.

int tree sum(tree t tree);
// EFFECTS: Returns the sum of all elements in "tree".
// Returns zero if "tree" is empty.

bool tree search(tree t tree, int key);
// EFFECTS: Returns true if there exists any element in "tree"
// whose value is "key". Otherwise, returns “false”.

int depth(tree t tree);

// EFFECTS: Returns the depth of "tree", which equals the number of
// layers of nodes in the tree.

// Returns zero if "tree" is empty.

//

// For example, the tree

//

// 4

// / \

// / \

// 2 5

// /\ /\

// 3 8

// / \ /\

// 6 7

// / N/ N\

//

// has depth 4.

// The element 4 is on the first layer.

// The elements 2 and 5 are on the second layer.
// The elements 3 and 8 are on the third layer.
// The elements 6 and 7 are on the fourth layer.

int tree min(tree t tree);
// REQUIRES: "tree" is non-empty.
// EFFECTS: Returns the smallest element in "tree".

list t traversal (tree t tree);
// EFFECTS: Returns the elements of "tree" in a list using an

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

in-order traversal. An in-order traversal prints
the "left most" element first, then the second-left-most,

and so on, until the right-most element is printed.

For any node, all the elements of its left subtree

are considered as on the left of that node and
all the elements of its right subtree are considered as
on the right of that node.
For example, the tree:
4
/N
/ \
2 5
/ N\ / N\
3
/ \

would return the list

(23 45)

An empty tree would print as:

bool tree hasPathSum(tree t tree, int sum);

//
//
//
//
//
//
//
//
//
//
//
//

EFFECTS: Returns true if and only if "tree" has at least one
root-to-leaf path such that adding all elements along
the path equals "sum".

A root-to-leaf path is a sequence of elements in a tree starting
with the root element and proceeding downward to a leaf (an element
with no children).

An empty tree has no root-to-leaf path.

For example, the tree:

//
//
//
//
//
//
//
//
//
//
//
//

We can define a special relation between trees "is covered by" as follows:

4
/N
/ \
1 5
/ N\ / N\
3 6
/N /N

has three root-to-leaf paths: 4->1->3, 4->1->6 and
Given sum = 9, the path 4->5 has the sum 9, so the
should return true. If sum = 10, since no path has
the function should return false.

e Anempty tree is covered by all trees.
e The empty tree covers only other empty trees.
For any two non-empty trees, A and B, A is covered by B if and only if the root elements

4->5,
function
the sum 10,

of A and B are equal, the left subtree of A is covered by the left subtree of B, and the

right subtree of A is covered by the right subtree of B.

For example, the tree:

4
/ N\
/N
2 5
/N /N
3
/ N\

covers the tree:

/ N\

/ A\

but not the trees:

/ / N\

/ A\

In light of this definition, write the following function:

bool covered by(tree t A, tree t B);
// EFFECTS: Returns true if tree A is covered by tree B.

With the definition of “covered by”, we can define a relation “contained by”. A tree A is
contained by a tree B if

e Aiscovered by B, or,
e As covered by a subtree of B.

Note that in the above definition, a subtree of a tree T is an empty tree or a non-empty tree
composed of a node S in T together with all downstream nodes of the node S in T (called the
descendants of S in T).

For example, for the tree T

4
/\

/ \
2 5
/ \ / \

3 8
/\ / \
6 7
/N /N
the tree
3
/\
6 7

/N /N

is a subtree of T. However, the tree

3

/ N\
7

/ \
is not.

Based on the definition of “contained by”, the trees

4 5
/\ / N\
/ and
2
/ N\

are contained by the tree

4
/ N\
/ \
2 5

/NN
3
/ N\

but this tree is not:

/ N\

Please write a function implementing the relation “contained by”:

bool contained by(tree t A, tree t B);
// EFFECTS: Returns true if tree A is covered by tree B
// or a subtree of B.

There exists a special kind of binary tree, called the sorted binary tree. A sorted binary tree is
well-formed if:

1. Itis a well-formed binary tree and
2. One of the following is true:
a) The tree is empty.
b) The left subtree is a sorted binary tree, and any element in the left subtree is strictly
less than the root element of the tree. The right subtree is a sorted binary tree, and any
element in the right subtree is greater than or equal to the root element of the tree.

For example, the following trees are all well-formed sorted binary trees:

4 1
/N / N\
/ \ 1
2 6 / N\
/ A\ / N\ 2
1 3 5 7 /\
/N NN N

while the following trees are not:

1 1 4
/ N\ /N / A\
1 2 3 3 6
/ A\ / N\ \

You are to write the following function for creating sorted binary trees:

tree t insert tree(int elt, tree t tree);
// REQUIRES: "tree" is a sorted binary tree.

//

// EFFECTS: Returns a new tree with "elt" inserted at a leaf such that
// the resulting tree is also a sorted binary tree.

//

// For example, inserting 1 into the tree:

//

// 4

// / \

// / \
// 2 5
// /N / \
// 3

// /\

//

// would yield

// /N /N

// Hint: There is only one unique position for any element to be

// inserted.

Files

There are several files located inthe Project-Two-Related-Files. zip of our Canvas

Resources:
p2.h The header file for the functions you must write
recursive.h The 1ist tand tree_t interfaces

recursive.cpp The implementationsof 1ist tand tree t.

You should copy the above files into your working directory. DO NOT modify these files! You
should put all of the functions you write in a single file, called p2 . cpp (exactly like this!). You
may only use <iostream> and <cstdlib> libraries, and no others. You may not use global
variables. You can think of p2 . cpp as providing a library of functions that other programs
might use, just as recursive. cpp does.

Testing

You can use the following two functions to check the equivalence of two lists and the
equivalence of two trees, respectively.

bool list equal(list t 11, list t 12)
// EFFECTS: returns true 1iff 11 == 12.

if (list isEmpty(ll) && list isEmpty(12))
{
return true;
}
else 1if(list isEmpty(ll) || list isEmpty(12))
{
return false;
}
else if(list first(ll) != list first(1l2))
{
return false;
}
else
{
return list equal (list rest(ll), list rest(1l2));

bool tree equal(tree t tl, tree t t2)
// EFFECTS: returns true iff tl == t2

if (tree isEmpty(tl) && tree isEmpty(t2))
{

return true;
}
else if(tree isEmpty(tl) || tree isEmpty(t2))
{

return false;
}
else
{

return ((tree elt(tl) == tree elt(t2))

&& tree equal (tree left(tl), tree left(t2))

&& tree equal (tree right(tl), tree right(t2)));

To test your code, you should create a family of test case programs that exercise the functions we
ask you to write. Here is a simple illustration to get you started:

#include <iostream>
#include "recursive.h"
#include "p2.h"

using namespace std;

static bool 1list equal(list t 11, list t 12)
// EFFECTS: returns true iff 11 == 12.

if (list isEmpty(ll) && list isEmpty(12))
{
return true;
}
else 1if(list isEmpty(ll) || list isEmpty(12))
{
return false;
}
else if(list first(ll) != list first(12))
{
return false;
}
else
{
return list equal (list rest (l1l), list rest(1l2));

int main ()
{
int 1i;
list t listA, listA answer;

list t 1listB, listB answer;

listA = list make();

listB = list make();
listA answer = list make();

listB answer = list make();

for(i = 5; 1>0; i--)

{
listA = list make (i, listA);
listA answer = list make(6-i, listA answer);
listB = list make (i+10, 1listB);

listB answer = list make (i+10, listB answer);
}
for(i = 5; i>0; i--)
{

listB answer = list make (i, listB answer);

listB = append(listA, 1listB);
listA = reverse(listh);

if(!list equal (listA, listA answer))

return -1;

if(!list equal (listB, listB answer))

return -1;

return 0;

Note that in the above test program, the return value will be -1 if there is any error in the function
reverse and append. If the return value is 0, then you pass the above test case.

Suppose the above test code is written in the file test . cpp. Compile test . cpp with
recursive.cpp and your p2 . cpp using the following Linux command:

g+t+ -Wall -o test test.cpp recursive.cpp p2.cpp

To check the return value, you should first run the program in Linux by typing

./test

Then you can check the return value by typing
echo $7?
If the return value is -1, it indicates an error.

You may also find it helpful to add error messages to your output or print out the list or tree
using the functions 1ist print and tree print. You can find two more test examples
simple test.cppand treeins test.cpp inthe Project-Two-Related-
Files.zip on Canvas.

Submitting and Due Date

You only need to submit your source code file p2 . cpp (name it exactly like this!). The source

code file should be submitted via the online judgment system. The due date is 11:59 pm on June
17, 2018.

Grading

Your program will be graded along three criteria:

1. Functional Correctness
2. Implementation Constraints
3. General Style

An example of Functional Correctness is whether or not your reverse function reverses a list
properly in all cases. An example of an Implementation Constraint is whether reverse() is
recursive. General Style speaks to the cleanliness and readability of your code.

