Commit b75cfb7c by mmroma

### Intialized the transfer!

parents
 % Misc_Aero_Calcs %% Parameters p_f = 1.225; % kg / m^3 mu = 1.802e-5; % kg / m s d = 0.246; % m v_max = 10; % m / s R_max = 2e5; % %% Reynolds Number given speed % R = p_f * v_max * d / mu; %% Speed given reynolds number % v = mu * R_max / p_f / d; %% Plot everything against velocity v = 0.5:0.01:12; % 0.01 up to 12.0 m/s R = p_f .* v .* d ./ mu; C_D = (24 ./ R) .* (1 + 0.15 .* R .^ 0.681) + 0.407 ./ (1 + 8710./R); C_D_2 = (8./R) .* (1./ sqrt(phi_par))... + (16./R) .* (1./ sqrt(phi))... + (3./sqrt(R)) .* (1./ phi.^(3./4))... + 0.421.^(0.4 .* (- log(phi) ).^2 )... .* (1 ./ phi_perp); F_D = (1/8) .* C_D .* pi .* d.^2 .* p_f .* v.^2; F_D_2 = (1/8) .* C_D_2 .* pi .* d.^2 .* p_f .* v.^2; figure(1); plot(v, R); xlabel('Relative Wind Speed (m/s)'); ylabel('Reynolds Number'); % title('Reynolds Number'); figure(2); plot(v, C_D); xlabel('Relative Wind Speed (m/s)'); ylabel('Coefficient of Drag'); % title('Coefficient of Drag'); figure(3); plot(v, F_D); xlabel('Relative Wind Speed (m/s)'); ylabel('Drag Force (N)'); % title('Drag Force'); figure(4); plot(v, C_D_2); xlabel('Relative Wind Speed (m/s)'); ylabel('Coefficient of Drag'); % title('Coefficient of Drag'); figure(5); plot(v, F_D_2); xlabel('Relative Wind Speed (m/s)'); ylabel('Drag Force (N)');
 % Paper 4 - New simple correlation formula for the drag coefficient of non-spherical particles %% phi values for cubes phi = (pi/6)^(1/3); phi_perp = (9*pi/16)^(1/3); phi_par = ((9*pi/16)^(1/3) ) / (3 - (4/pi)); %% C_D p_f = 1.225; % kg / m^3 mu = 1.802e-5; % kg / m s d = 0.246; % m v_max = 10; % m / s R_max = 2e5; % v = 0.5:0.01:12; % 0.01 up to 12.0 m/s R = p_f .* v .* d ./ mu; C_D = (8./R) .* (1./ sqrt(phi_par))... + (16./R) .* (1./ sqrt(phi))... + (3./sqrt(R)) .* (1./ phi.^(3./4))... + 0.421.^(0.4 .* (- log(phi) ).^2 )... .* (1 ./ phi_perp); %% Calc 4 phi_parallel % Let's say we have a cube being rotated and we want to find the average % parallel cross section. % % s = 1; % theta = 0:0.01:2*pi; % % % x1 = calc_x(theta + pi/4); % % y1 = calc_y(theta); % x2 = calc_x(theta + pi/2 + pi/4); % % y2 = calc_y(theta + pi/2); % x3 = calc_x(theta + pi + pi/4); % % y3 = calc_y(theta + pi); % x4 = calc_x(theta + 3*pi/2 + pi/4); % % y4 = calc_y(theta + 3*pi/2); % % max_x = max( max(x1,x2), max(x3,x4) ); % min_x = min( min(x1,x2), min(x3,x4) ); % % %% % % figure(1); % % plot(theta,x1); % % hold on; % % plot(theta,x2); % % plot(theta,x3); % % plot(theta,x4); % % hold off; % % legend('x1','x2','x3','x4'); % % % % figure(2); % % plot(theta,max_x); % % hold on; % % plot(theta,min_x); % % hold off; % % legend('max x','min x'); % % figure(3); % plot(theta,max_x - min_x); % legend('length'); % % %% % % figure(4); % % plot(theta, (sqrt(2)-s).*sin(2.*theta) + s); % % hold on; % % plot(theta, -(sqrt(2)-s).*sin(2.*theta) + s); % % plot(theta,max_x - min_x); % % title('Length with function'); % % % %% % % figure(5); % % plot(theta, sqrt(2)./2.*sin(2.*theta) + 1); % % hold on; % % plot(theta, -sqrt(2)./2.*sin(2.*theta) + 1); % % % %% % % phi_par_avg = (sqrt(2)*s + (pi/2 - 1) * s * s) / (pi/2); % % % % length_par_avg = (sqrt(2) + (pi/2 - 1) * s) / (pi/2); % % % % calc_length_par_avg = mean(max_x - min_x); % % % function [xs] = calc_x(theta_in) % xs = sqrt(2) ./ 2 .* cos(theta_in); % end % % % function [ys] = calc_y(theta_in) % ys = sqrt(2) ./ 2 .* sin(theta_in); % end \ No newline at end of file