From f40838b6690f2d0fc3968d39de894d0025ef3edc Mon Sep 17 00:00:00 2001 From: Max New <maxsnew@gmail.com> Date: Thu, 12 Jul 2018 12:40:19 +0100 Subject: [PATCH] edit the rest --- paper/gtt.tex | 11 +++++------ 1 file changed, 5 insertions(+), 6 deletions(-) diff --git a/paper/gtt.tex b/paper/gtt.tex index 7593b45..f49034c 100644 --- a/paper/gtt.tex +++ b/paper/gtt.tex @@ -7948,11 +7948,11 @@ The goal of this section is to prove that a symmetric equality $E \equidyn E'$ in CBPV (i.e. $E \ltdyn E'$ and $E' \ltdyn E$) implies contextual equivalence $E \ctxize= E'$ and that inequality in CBPV $E \ltdyn E'$ implies error approximation $E \ctxize\ltdyn E'$, which will give operational -graduality: +graduality\ifshort .\else :\fi \begin{longonly} \begin{small} \begin{mathpar} - \inferrule{\Gamma \pipe \Delta \vdash E \equidyn E' : T}{\Gamma \pipe \Delta \vDash E \ctxize= E' \in T}\and + \inferrule{\Gamma \pipe \Delta \vdash E \equidyn E' : T}{\Gamma \pipe \Delta \vDash E \ctxize= E' \in T}\and \inferrule{\Gamma \pipe \Delta \vdash E \ltdyn E' : T}{\Gamma \pipe \Delta \vDash E \ctxize\ltdyn E' \in T} \end{mathpar} \end{small} @@ -7998,8 +7998,7 @@ $\diverge$ as a \emph{maximal} element. logical relation to characterize $\preceq$, and then obtain results about observational equivalence from that~\cite{ahmed06:lr}. A similar move works for error - approximation~\cite{newahmed18}, but since $R \ltdyn R'$ is \emph{not} an equivalence - relation on results, it is decomposed as the conjunction of two + approximation~\cite{newahmed18}, but since $R \ltdyn R'$ is \emph{not} symmetric, it is decomposed as the conjunction of two orderings: error approximation up to divergence on the left $\errordivergeleft$ (the preorder where $\err$ and $\diverge$ are both minimal: $\err \preceq\ltdyn R$ and $\diverge \preceq\ltdyn R$) and @@ -8167,7 +8166,7 @@ We use a logical relation to prove results about $E \ctxize\apreorder E'$ where $\apreorder$ is a divergence preorder. The ``finitization'' of divergence preorder is a relation between \emph{programs} and \emph{results}: a program approximates a result $R$ -at index $i$ if it reduces to $R$ in $\le i$ steps or it reduces at +at index $i$ if it reduces to $R$ in $< i$ steps or it reduces at least $i$ times. \end{shortonly} @@ -8203,7 +8202,7 @@ at least $i$ times. \fi defined by \[ - M \ix \apreorder i R = (\exists M'.~ M \bigstepsin{i} M') \vee (\exists (j\leq i). \exists R_M.~ M \bigstepsin{j} R_M \wedge R_M \apreorder R) + M \ix \apreorder i R = (\exists M'.~ M \bigstepsin{i} M') \vee (\exists (j< i). \exists R_M.~ M \bigstepsin{j} R_M \wedge R_M \apreorder R) \] \end{definition} -- GitLab