diff --git a/paper/gtt.tex b/paper/gtt.tex index 692c3f4852b6140b892153c0a7d495ed83173d6f..6fc5fc67db315cd85ec905d54cb14a35294b3df6 100644 --- a/paper/gtt.tex +++ b/paper/gtt.tex @@ -165,6 +165,7 @@ \newcommand{\bigstepzero}{\bigstepsin{0}} \newcommand{\pair}[2]{\{ \pi \mapsto {#1} \pipe \pi' \mapsto {#2}\}} +\newcommand{\emptypair}[0]{\{\}} \newcommand{\pairWtoXYtoZ}[4]{\{ #1 \mapsto {#2} \pipe #3 \mapsto {#4}\}} \newcommand{\tru}{\texttt{true}} \newcommand{\fls}{\texttt{false}} @@ -198,8 +199,10 @@ \newcommand{\too}{\kw{to}} \newcommand{\case}{\kw{case}} \newcommand{\kw}[1]{\texttt{#1}\,\,} +\newcommand{\absurd}{\kw{absurd}} \newcommand{\caseofXthenYelseZ}[3]{\case #1 \{ #2 \pipe #3 \}} \newcommand{\pmpairWtoXYinZ}[4]{\kw{split} #1\,\kw{to} (#2,#3). #4} +\newcommand{\pmpairWtoinZ}[2]{\kw{split} #1\,\kw{to} (). #2} \newcommand{\pmmuXtoYinZ}[3]{\kw{unroll} #1 \,\kw{to} \roll #2. #3} \newcommand{\ret}{\kw{ret}} \newcommand{\thunk}{\kw{thunk}} @@ -207,6 +210,13 @@ \newcommand{\abort}{\kw {abort}} \newcommand{\with}{\mathbin{\&}} +\newcommand{\bnfalt}{\mathrel{\bf \,\mid\,}} +\newcommand{\alt}{\bnfalt} +\newcommand{\bnfdef}{\mathrel{\bf ::=}} +\newcommand{\bnfadd}{\mathrel{\bf +::=}} +\newcommand{\bnfsub}{\mathrel{\bf -::=}} + + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} @@ -616,8 +626,6 @@ Generalizing further, a stack out of an iterated function type $A_1 \subsection{Casts} - - It is not immediately obvious how to add type casts to call-by-push-value, but we can use previous work on call-by-value and call-by-name gradual typing, combined with the embeddings of CBV and @@ -706,6 +714,485 @@ TODO: do we actually know what would go wrong in that case? %% Then for every type A, there are CBV coreflections (e(x) = inc; ret x | p(y) = dec; ret y) +\begin{figure} + \[ + \begin{array}{lcl} + A & ::= & \dynv \mid U \u B \mid 0 \mid A_1 + A_2 \mid 1 \mid A_1 \times A_2 \\ + \u B & ::= & \dync \mid \u F A \mid \u B_1 \with \u B_2 \mid A \to \u B\\ + \Gamma & ::= & \cdot \mid \Gamma, x : A \\ + \Delta & ::= & \cdot \mid \bullet : \u B \\ + \Phi & ::= & \cdot \mid \Phi, x \ltdyn x': A \ltdyn A' \\ + \Psi & ::= & \cdot \mid \bullet \ltdyn \bullet : \u B \ltdyn \u B' \\ + V & ::= & x \mid \upcast A {A'} V \mid \upcast {\u B} {\u B'} V \mid \abort{V} + \mid \inl{V} \mid \inr{V} \mid \caseofXthenYelseZ V {x_1. V_1}{x_2.V_2} \mid \\ + & & () \mid \pmpairWtoinZ V V' \mid (V_1,V_2) \mid \pmpairWtoXYinZ V x y V' \mid \thunk{M} + \\ + M & ::= & \bullet \mid \err \mid \letXbeYinZ V x M \mid \dncast A {A'} M \mid \dncast {\u B} {\u B'} M \mid \abort{V} \mid \\ + & & \caseofXthenYelseZ V {x_1. M_1}{x_2.M_2} \mid \pmpairWtoinZ V M \mid \pmpairWtoXYinZ V x y M + \mid \force{V} \mid \\ + & & \ret{V} \mid \bindXtoYinZ{M}{x}{N} \mid \lambda x:A.M \mid M\,V \mid \pair{M_1}{M_2} \mid \pi M \mid \pi' M + \\ + T & ::= & A \mid \u B \\ + E & ::= & V \mid M \\ + \end{array} + \] + \caption{GTT Syntax} +\end{figure} + +\begin{figure} + \begin{mathpar} + \inferrule{ }{A \ltdyn A} + + \inferrule{A \ltdyn A' \and A' \ltdyn A''} + {A \ltdyn A''} + + \inferrule{ }{\u B \ltdyn \u B'} + + \inferrule{\u B \ltdyn \u B' \and \u B' \ltdyn \u B''} + {\u B \ltdyn \u B''} +\\ + \inferrule{ }{A \ltdyn \dynv} + + \inferrule{\u B \ltdyn \u B'} + {U B \ltdyn U B'} + + \inferrule{A_1 \ltdyn A_1' \and A_2 \ltdyn A_2' } + {A_1 + A_2 \ltdyn A_1' + A_2'} + + \inferrule{A_1 \ltdyn A_1' \and A_2 \ltdyn A_2' } + {A_1 \times A_2 \ltdyn A_1' \times A_2'} + +\\ +\inferrule{ }{\u B \ltdyn \dync} + +\inferrule{A \ltdyn A' }{ \u F A \ltdyn \u F A'} + +\inferrule{\u B_1 \ltdyn \u B_1' \and \u B_2 \ltdyn \u B_2'} + {\u B_1 \with \u B_2 \ltdyn \u B_1' \with \u B_2'} + +\inferrule{A \ltdyn A' \and \u B \ltdyn \u B'} + {A \to \u B \ltdyn A' \to \u B'} +\\ +\inferrule{ }{\cdot \, \mathsf{ctx}} +\and +\inferrule{\Phi \, \mathsf{ctx} \and + A \ltdyn A'} + {\Phi, x \ltdyn x' : A \ltdyn A' \, \mathsf{ctx}} +\and +\inferrule{ }{\cdot \, \mathsf{cctx}} +\and +\inferrule{\u B \ltdyn \u B'} + {(\bullet \ltdyn \bullet : \u B \ltdyn \u B') \, \mathsf{cctx}} +\end{mathpar} + + +\caption{GTT Type and Context Dynamism} +\end{figure} + +\begin{figure} +\begin{small} + \begin{mathpar} + \inferrule + { } + {\Gamma,x : A,\Gamma' \vdash x : A} + + \inferrule + { } + {\Gamma\pipe \bullet : \u B \vdash \bullet : \u B} + + \inferrule + { } + {\Gamma \vdash \err : \u B} + + %% FIXME: why? + \inferrule + {\Gamma \vdash V : A \and + \Gamma, x : A \vdash M : \u B + } + {\Gamma \vdash \letXbeYinZ V x M : \u B} +\\ + \inferrule + {\Gamma \vdash V : A \and A \ltdyn A'} + {\Gamma \vdash \upcast A {A'} V : A'} + \quad + \qquad + \inferrule + {\Gamma\pipe \Delta \vdash M : \u B' \and \u B \ltdyn \u B'} + {\Gamma\pipe \Delta \vdash \dncast{\u B}{\u B'} M : \u B} +\\ + \inferrule + {\Gamma \vdash V : 0} + {\Gamma \mid \Delta \vdash \abort V : T} + + \inferrule + {\Gamma \vdash V : A_1} + {\Gamma \vdash \inl V : A_1 + A_2} + + \inferrule + {\Gamma \vdash V : A_2} + {\Gamma \vdash \inr V : A_1 + A_2} + + \inferrule + { + \Gamma \vdash V : A_1 + A_2 \\\\ + \Gamma, x_1 : A_1 \mid \Delta \vdash E_1 : T \\\\ + \Gamma, x_2 : A_2 \mid \Delta \vdash E_2 : T + } + {\Gamma \mid \Delta \vdash \caseofXthenYelseZ V {x_1. E_1}{x_2.E_2} : T} + \\ + \inferrule + { } + {\Gamma \vdash (): 1} + \qquad + \inferrule + {\Gamma \vdash V : 1 \and + \Gamma \mid \Delta \vdash E : T + } + {\Gamma \mid \Delta \vdash \pmpairWtoinZ V E : T} + \qquad + \inferrule + {\Gamma \vdash V_1 : A_1\and + \Gamma\vdash V_2 : A_2} + {\Gamma \vdash (V_1,V_2) : A_1 \times A_2} + \qquad + \inferrule + {\Gamma \vdash V : A_1 \times A_2 \\\\ + \Gamma, x : A_1,y : A_2 \mid \Delta \vdash E : T + } + {\Gamma \mid \Delta \vdash \pmpairWtoXYinZ V x y E : T} + \\ + \inferrule + {\Gamma \mid \cdot \vdash M : \u B} + {\Gamma \vdash \thunk M : U \u B} + + \inferrule + {\Gamma \vdash V : U \u B} + {\Gamma \pipe \cdot \vdash \force V : \u B} + + \inferrule + {\Gamma \vdash V : A} + {\Gamma \pipe \cdot \vdash \ret V : \u F A} + + \inferrule + {\Gamma \pipe \Delta \vdash M : \u F A \\\\ + \Gamma, x: A \pipe \cdot \vdash N : \u B} + {\Gamma \pipe \Delta \vdash \bindXtoYinZ M x N : \u B} + + \inferrule + {\Gamma, x: A \pipe \Delta \vdash M : \u B} + {\Gamma \pipe \Delta \vdash \lambda x : A . M : A \to \u B} + + \inferrule + {\Gamma \pipe \Delta \vdash M : A \to \u B\and + \Gamma \vdash V : A} + {\Gamma \pipe \Delta \vdash M\,V : \u B } + \\ + \inferrule{ }{\Gamma \mid \cdot \vdash \emptypair : \top} + + \inferrule + {\Gamma \mid \Delta \vdash M_1 : \u B_1\and + \Gamma \mid \Delta \vdash M_2 : \u B_2} + {\Gamma \mid \Delta \vdash \pair {M_1} {M_2} : \u B_1 \with \u B_2} + + \inferrule + {\Gamma \mid \Delta \vdash M : \u B_1 \with \u B_2} + {\Gamma \mid \Delta \vdash \pi M : \u B_1} + + \inferrule + {\Gamma \mid \Delta \vdash M : \u B_1 \with \u B_2} + {\Gamma \mid \Delta \vdash \pi' M : \u B_2} + \end{mathpar} + \caption{GTT Terms} +\end{small} +\end{figure} + + +\begin{figure} + \begin{small} + \begin{mathpar} + \inferrule + { } + {x : A \vdash x \ltdyn \upcast A {A'} x : A \ltdyn A'} + + \inferrule + { } + {x \ltdyn x' : A \ltdyn A' \vdash \upcast A {A'} x \ltdyn x' : A' } + + \inferrule + { } + {\bullet : \u B' \vdash \dncast{\u B}{\u B'} \bullet \ltdyn \bullet : \u B \ltdyn \u B'} + + \inferrule + { } + {\bullet \ltdyn \bullet : \u B \ltdyn \u B' \vdash \bullet \ltdyn \dncast{\u B}{\u B'} \bullet : \u B} + + \inferrule + { } + {\caseofXthenYelseZ{\inl V}{x_1. E_1}{x_2. E_2} \equidyn E_1[V/x_1]} + + \inferrule + { } + {\caseofXthenYelseZ{\inr V}{x_1. E_1}{x_2. E_2} \equidyn E_2[V/x_2]} + + \inferrule + {\Gamma, x : A_1 + A_2 \vdash E : T} + {\Gamma, x : A_1 + A_2 \vdash E \equidyn \caseofXthenYelseZ x {x_1. E[\inl x_1/x]}{x_2. E[\inr x_2/x]} : T} + + \inferrule + { } + {\pmpairWtoXYinZ{(V_1,V_2)}{x_1}{x_2}{E} \equidyn E[V_1/x_1,V_2/x_2]} + + \inferrule + {\Gamma, x : A_1 \times A_2 \vdash E : T} + {\Gamma, x : A_1 \times A_2 \vdash E \equidyn \pmpairWtoXYinZ x {x_1}{x_2} E[(x_1,x_2)/x] : T} + + \inferrule + {\Gamma, x : 1 \vdash E : T} + {\Gamma, x : 1 \vdash E \equidyn \pmpairWtoinZ{x}{E[()/x]} : T} + \\ + \inferrule + { } + {\force\thunk M \equidyn M} + + \inferrule + { } + {x : U \u B \vdash x \equidyn \thunk\force x : U \u B} + \\ + %% why? + %% \inferrule + %% {} + %% {\letXbeYinZ V x M \equidyn M[V/x]} + + \inferrule + { } + {\bindXtoYinZ {\ret V} x M \equidyn M[V/x]} + + \inferrule + { } + {\bullet : \u F A \vdash \bullet \equidyn \bindXtoYinZ \bullet x \ret x : \u F A} + + \inferrule + { } + {(\lambda x:A. M)\,V \equidyn M[V/x]} + + \inferrule + { } + {\bullet : A \to \u B \vdash \bullet \equidyn \lambda x:A. \bullet\,x : A \to \u B} + \\ + \inferrule + { } + {\pi \pair{M}{M'} \equidyn M} + + \inferrule + { } + {\pi' \pair{M}{M'} \equidyn M'} + + \inferrule + { } + {\bullet : \u B_1 \with \u B_2 \vdash \bullet \equidyn\pair{\pi \bullet}{\pi' \bullet} : \u B_1 \with \u B_2} + + \inferrule{ } + {\bullet : \top \vdash \bullet \equidyn \{\} : \top} + \end{mathpar} + \end{small} + \caption{GTT Term Precision Axioms} +\end{figure} + +\begin{figure} + \begin{mathpar} + \inferrule + {\Gamma \pipe \Delta \vdash M : \u F A' \and A \ltdyn A'} + {\Gamma \pipe \Delta \vdash \dncast {\u F A} {\u F A'} M : \u F A} + + \inferrule + {\Gamma \vdash V : U \u B \and \u B \ltdyn \u B'} + {\Gamma \vdash \upcast {U \u B} {U \u B'} V : U \u B'} + \\ + \inferrule + {A \ltdyn A' \and \Phi \vdash V \ltdyn V' : A \ltdyn A'} + {\Phi \vdash V \ltdyn \upcast {A'} {A''} {V'} : A \ltdyn A''} + + \inferrule + {\Phi \vdash V \ltdyn V'' : A \ltdyn A''} + {\Phi \vdash \upcast A {A'} V \ltdyn V'' : A' \ltdyn A'' } + + \inferrule + { \u B' \ltdyn \u B'' \and \Phi \mid \Psi \vdash M' \ltdyn M'' : \u B' \ltdyn \u B''} + { \Phi \mid \Psi \vdash \dncast{\u B}{\u B'} M' \ltdyn M'' : \u B \ltdyn \u B''} + + \inferrule + { \Phi \mid \Psi \vdash M \ltdyn M'' : B \ltdyn B'' } + { \Phi \mid \Psi \vdash M \ltdyn \dncast{\u B'}{\u B''} M'' : \u B \ltdyn \u B''} + \end{mathpar} + \caption{Derived Cast Rules} +\end{figure} + +\begin{figure} +\begin{small} + \begin{mathpar} + + \inferrule{ }{\Gamma \ltdyn \Gamma \vdash V \ltdyn V : A \ltdyn A} + + \inferrule{\Gamma \ltdyn \Gamma' \vdash V \ltdyn V' : A \ltdyn A' \\\\ + \Gamma' \ltdyn \Gamma'' \vdash V' \ltdyn V'' : A' \ltdyn A'' + } + {\Gamma \ltdyn \Gamma'' \vdash V \ltdyn V'' : A \ltdyn A''} + \\ + \inferrule{ }{\Gamma \ltdyn \Gamma \mid \Delta \ltdyn \Delta \vdash M \ltdyn M : \u B \ltdyn \u B} + + \inferrule{\Gamma \ltdyn \Gamma' \mid \Delta \ltdyn \Delta' \vdash M \ltdyn M' : \u B \ltdyn \u B' \\\\ + \Gamma' \ltdyn \Gamma'' \mid \Delta' \ltdyn \Delta'' \vdash M' \ltdyn M'' : \u B' \ltdyn \u B'' + } + {\Gamma \ltdyn \Gamma'' \mid \Delta \ltdyn \Delta'' \vdash M \ltdyn M'' : \u B \ltdyn \u B''} + + \inferrule + { } + {\Phi,x \ltdyn x' : A \ltdyn A',\Phi' \vdash x \ltdyn x' : A \ltdyn A'} + + \inferrule + {\Phi \vdash V \ltdyn V' : A \ltdyn A' \\\\ + \Phi, x \ltdyn x' : A \ltdyn A',\Phi' \pipe \Psi \vdash E \ltdyn E' : T \ltdyn T' + } + {\Phi \mid \Psi \vdash E[V/x] \ltdyn E'[V'/x'] : T \ltdyn T'} + + \inferrule + { } + {\Phi \pipe \bullet \ltdyn \bullet : \u B \ltdyn \u B' \vdash \bullet \ltdyn \bullet : \u B \ltdyn \u B'} + + \inferrule + {\Phi \pipe \Psi \vdash M_1 \ltdyn M_1' : \u B_1 \ltdyn \u B_1' \\\\ + \Phi \pipe \bullet \ltdyn \bullet : \u B_1 \ltdyn \u B_1' \vdash M_2 \ltdyn M_2' : \u B_2 \ltdyn \u B_2' + } + {\Phi \mid \Psi \vdash M_2[M_1/\bullet] \ltdyn M_2'[M_1'/\bullet] : \u B_2 \ltdyn \u B_2'} + \end{mathpar} +\end{small} +\caption{GTT Term Precision (Identity and Substitution)} +\end{figure} + + +\begin{figure} +\begin{small} + \begin{mathpar} +%% FIXME: why? + %% \inferrule + %% {\Phi \vdash V \ltdyn V' : A \ltdyn A' \and + %% \Phi, x \ltdyn x' : A \ltdyn A' \pipe \Psi \vdash M \ltdyn M' : \u B \ltdyn \u B' + %% } + %% {\Phi \mid \Psi \vdash \letXbeYinZ V x M \ltdyn \letXbeYinZ {V'} {x'} {M'} : \u B \ltdyn \u B'} + \\ + %% congruence for casts is derivable, right? + \inferrule + {\Phi \vdash V \ltdyn V' : 0 \ltdyn 0} + {\Phi \mid \Psi \vdash \abort V \ltdyn \abort V' : T \ltdyn T'} + \\ + \inferrule + {\Phi \vdash V \ltdyn V' : A_1 \ltdyn A_1'} + {\Phi \vdash \inl V \ltdyn \inl V' : A_1 + A_2 \ltdyn A_1' + A_2'} + + \inferrule + {\Phi \vdash V \ltdyn V' : A_2 \ltdyn A_2'} + {\Phi \vdash \inr V \ltdyn \inr V' : A_1 + A_2 \ltdyn A_1' + A_2'} + + \inferrule + { + \Phi \vdash V \ltdyn V' : A_1 + A_2 \ltdyn A_1' + A_2' \\\\ + \Phi, x_1 \ltdyn x_1' : A_1 \ltdyn A_1' \mid \Psi \vdash E_1 \ltdyn E_1' : T \ltdyn T' \\\\ + \Phi, x_2 \ltdyn x_2' : A_2 \ltdyn A_2' \mid \Psi \vdash E_2 \ltdyn E_2' : T \ltdyn T' + } + {\Phi \mid \Psi \vdash \caseofXthenYelseZ V {x_1. E_1}{x_2.E_2} \ltdyn \caseofXthenYelseZ V {x_1'. E_1'}{x_2'.E_2'} : T'} + \\ + + \inferrule + {\Phi \vdash V \ltdyn V' : 1 \ltdyn 1 \and + \Phi \mid \Psi \vdash E \ltdyn E' : T \ltdyn T' + } + {\Phi \mid \Psi \vdash \pmpairWtoinZ V E \ltdyn \pmpairWtoinZ V' E' : T \ltdyn T'} + + \inferrule + {\Phi \vdash V_1 \ltdyn V_1' : A_1 \ltdyn A_1'\\\\ + \Phi\vdash V_2 \ltdyn V_2' : A_2 \ltdyn A_2'} + {\Phi \vdash (V_1,V_2) \ltdyn (V_1',V_2') : A_1 \times A_2 \ltdyn A_1' \times A_2'} + + \inferrule + {\Phi \vdash V \ltdyn V' : A_1 \times A_2 \ltdyn A_1' \times A_2' \\\\ + \Phi, x \ltdyn x' : A_1 \ltdyn A_1', y \ltdyn y' : A_2 \ltdyn A_2' \mid \Psi \vdash E \ltdyn E' : T \ltdyn T' + } + {\Phi \mid \Psi \vdash \pmpairWtoXYinZ V x y E \ltdyn \pmpairWtoXYinZ {V'} {x'} {y'} {E'} : T \ltdyn T'} + \\ + + \inferrule + {\Phi \mid \cdot \vdash M \ltdyn : \u B \ltdyn \u B'} + {\Phi \vdash \thunk M \ltdyn \thunk M' : U \u B \ltdyn U \u B'} + + \inferrule + {\Phi \vdash V \ltdyn V' : U \u B \ltdyn U \u B'} + {\Phi \pipe \cdot \vdash \force V \ltdyn \force V' : \u B \ltdyn \u B'} + \\ + + \inferrule + {\Phi \vdash V \ltdyn V' : A \ltdyn A'} + {\Phi \pipe \cdot \vdash \ret V \ltdyn \ret V' : \u F A \ltdyn \u F A'} + + \inferrule + {\Phi \pipe \Psi \vdash M \ltdyn M' : \u F A \ltdyn \u F A' \\\\ + \Phi, x \ltdyn x' : A \ltdyn A' \pipe \cdot \vdash N \ltdyn N' : \u B \ltdyn \u B'} + {\Phi \pipe \Psi \vdash \bindXtoYinZ M x N \ltdyn \bindXtoYinZ {M'} {x'} {N'} : \u B \ltdyn \u B'} + + \inferrule + {\Phi, x \ltdyn x' : A \ltdyn A' \pipe \Psi \vdash M \ltdyn M' : \u B \ltdyn \u B'} + {\Phi \pipe \Psi \vdash \lambda x : A . M \ltdyn \lambda x' : A' . M' : A \to \u B \ltdyn A' \to \u B'} + + \inferrule + {\Phi \pipe \Psi \vdash M \ltdyn M' : A \to \u B \ltdyn A' \to \u B' \\\\ + \Phi \vdash V \ltdyn V' : A \ltdyn A'} + {\Phi \pipe \Psi \vdash M\,V \ltdyn M'\,V' : \u B \ltdyn \u B' } + \\ + \inferrule + {\Phi \mid \Psi \vdash M_1 \ltdyn M_1' : \u B_1 \ltdyn \u B_1'\and + \Phi \mid \Psi \vdash M_2 \ltdyn M_2' : \u B_2 \ltdyn \u B_2'} + {\Phi \mid \Psi \vdash \pair {M_1} {M_2} \ltdyn \pair {M_1'} {M_2'} : \u B_1 \with \u B_2 \ltdyn \u B_1' \with \u B_2'} + \\ + \inferrule + {\Phi \mid \Psi \vdash M \ltdyn M' : \u B_1 \with \u B_2 \ltdyn \u B_1' \with \u B_2'} + {\Phi \mid \Psi \vdash \pi M \ltdyn \pi M' : \u B_1 \ltdyn \u B_1'} + + \inferrule + {\Phi \mid \Psi \vdash M \ltdyn M' : \u B_1 \with \u B_2 \ltdyn \u B_1' \with \u B_2'} + {\Phi \mid \Psi \vdash \pi' M \ltdyn \pi' M' : \u B_2 \ltdyn \u B_2'} + \end{mathpar} + \caption{GTT Term Dynamism (Compatibility Rules)} +\end{small} +\end{figure} + +\begin{figure} + \begin{mathpar} + \inferrule + {\Gamma \vdash V : A \and A \ltdyn A'} + {\Gamma \vdash \upcast A {A'} V : A'} + + \inferrule + {} + {x : A \vdash x \ltdyn \upcast A {A'} x : A \ltdyn A'} + + \inferrule + {} + {x \ltdyn x' : A \ltdyn A' \vdash \upcast A {A'} x \ltdyn x' : A'} + + \inferrule + {\Gamma\pipe \Delta \vdash M : \u B' \and \u B \ltdyn \u B'} + {\Gamma\pipe \Delta \vdash \dncast{\u B}{\u B'} M : \u B} + + \inferrule + {} + {\bullet : \u B' \vdash \dncast{\u B}{\u B'} \bullet \ltdyn \bullet : \u B \ltdyn \u B'} + + \inferrule + {} + {\bullet \ltdyn \bullet : \u B \ltdyn \u B' \vdash \bullet \ltdyn \dncast{\u B}{\u B'} \bullet : \u B} + \end{mathpar} + \caption{Casts in GTT} +\end{figure} + \subsection{Dynamic Types and Errors} Since our language has two different kinds of types, we have several @@ -788,6 +1275,57 @@ by taking just the subset of types that are sensible in Call-by-value. The key feature of call-by-value is that all of its types are interpreted as value types in call-by-push-value. +\begin{figure} + \begin{mathpar} + \begin{array}{lrcl} + \text{Types} & A & \bnfdef & 1 \alt (A + A) \alt (A \times A) \alt (A_1,\ldots,A_n) \to A\\ + \text{Values} & V & \bnfdef & \upcast{A}{A'}V \alt () \alt \inl V \alt \inr V \alt (V,V) \alt \lambda (x_1:A_1,\ldots,x_n:A_n). M\\ + \text{Terms} & M & \bnfdef & \err V \alt \alt \dncast{A}{A'}V \alt \caseofXthenYelseZ V {\inl x_1. M_1}{\inr x_2. M_2} \alt \pmpairWtoXYinZ V x y M \alt V(V_1,\ldots,V_n) \alt \bindXtoYinZ M x M \alt \letXbeYinZ V x M + \end{array} + \end{mathpar} + + \begin{mathpar} + \inferrule + {\Gamma \vdash V : A \and A \ltdyn A'} + {\Gamma \vdash \upcast A {A'} V : A'} + + \inferrule + {\Gamma \vdash V : A' \and A \ltdyn A'} + {\Gamma \vdash \dncast A {A'} V : A} + + \inferrule + {} + {x : A' \vdash \dncast A A' x \ltdyn x : A \ltdyn A'} + + \inferrule + {} + {x \ltdyn x' : A \ltdyn A' \vdash x \ltdyn \dncast A {A'} x : A} + \end{mathpar} + \caption{CBV GTT} +\end{figure} + +\begin{figure} + \begin{mathpar} + \inferrule + {A \ltdyn A' \and B \ltdyn B'} + {f : A \to B \vdash \dncast{A\to B}{A' \to B'} f \equidyn \lambda (x:A). \bindXtoYinZ {f(\upcast{A}{A'}x)} y \dncast{B}{B'} y} + + \inferrule + { + f \ltdyn \lambda (x:A). \bindXtoYinZ {f(x)} y y + \and + \inferrule + {\inferrule + {\inferrule{f \ltdyn f'\and x \ltdyn \upcast{A}{A'}x}{{f(x)} \ltdyn f'(\upcast{A}{A'}x)} \and {y \ltdyn y' \vdash y \ltdyn \dncast{B}{B'} y}} + {x \ltdyn x : A \vdash \bindXtoYinZ {f(x)} y y \ltdyn \bindXtoYinZ {f'(\upcast{A}{A'}x)} y' \dncast{B}{B'} y} + } + {\lambda (x:A). \bindXtoYinZ {f(x)} y y \ltdyn \lambda (x:A). \bindXtoYinZ {f'(\upcast{A}{A'}x)} y' \dncast{B}{B'} y} + } + {f \ltdyn f' : A \to B \ltdyn A' \to B' + \vdash f \ltdyn \lambda (x:A). \bindXtoYinZ {f'(\upcast{A}{A'}x)} y' \dncast{B}{B'} y'} + \end{mathpar} + \caption{Uniqueness Principle for CBV Functions} +\end{figure} \section{Theorems in Gradual Type Theory} @@ -808,7 +1346,23 @@ Gradual Type Theory. \subsection{Upcasts are Thunkable, Downcasts are Linear, a posteriori} -While we have shown +\begin{theorem}{Upcasts are (Complex) Values, Downcasts are (Complex) Stacks} + If the tagging upcasts are complex values and untagging downcasts + are stacks, then all upcasts are complex values and all downcasts + are complex stacks. +\end{theorem} +\begin{proof} + +\end{proof} + +\subsection{Retract Axiom} + +In the call-by-name version of GTT (\cite{GTT}), there was an explicit +axiom that states that every pair of upcasts and downcasts forms a +section-retraction pair: i.e., that the downcast applied to the upcast +is the identity. +% + \subsection{Uniqueness Principles for Casts} @@ -819,11 +1373,95 @@ principles of each type, given in figure TODO ref. \begin{figure} \begin{mathpar} - TODO + \upcast{0}{A}V \equidyn \absurd V\\ + \dncast{\u F 0}{\u F A} \equidyn \err\\ + + \dncast{1}{\u B} \equidyn \{\}\\ + \upcast{U 1}{U \u B} \equidyn \thunk \err\\ \end{mathpar} \caption{Uniqueness Principles for Casts} \end{figure} +To prove these uniqueness theorems, we use the fact that the +specification of upcasts and downcasts by their right and left +$\ltdyn$ rules defines them \emph{uniquely} up to $\equidyn$. +% +In category-theoretic terms this says that the upcasts and downcasts +have a \emph{universal property}, and so we can show that something +else is equivalent to the upcast or downcast by showing that it has +the \emph{same} property. +% + +\begin{lemma}{Specification for Casts is a Universal Property} + If $A \ltdyn A'$ and $x : A \vdash V_u[x] : A'$ is a value such that + the following judgments are provable: + \begin{mathpar} + \inferrule + {} + {x : A \ltdyn x' : A' \vdash V_u[x] \ltdyn x' : A'} + + \inferrule + {} + {x_2 : A \ltdyn x : A \vdash x_2 \ltdyn V_u[x] : A \ltdyn A'} + \end{mathpar} + + then we can prove $x : A \vdash V_u[x] \equidyn x : A$. + + Similarly, if $\u B \ltdyn \u B'$ and $\bullet : \u B' \vdash S_d : + \u B$ is a stack such that the following are provable: + \begin{mathpar} + \inferrule + {} + {\bullet \ltdyn \bullet : \u B' \vdash S_d \ltdyn \bullet : \u B \ltdyn \u B'} + + \inferrule + {} + {\bullet \ltdyn \bullet : \u B \ltdyn \u B' \vdash \bullet \ltdyn S_d : \u B} + \end{mathpar} + then we can prove $\bullet : \u B' \vdash S_d \equidyn \dncast{\u B}{\u B'}\bullet : \u B$ +\end{lemma} +\begin{proof} + \begin{mathpar} + \inferrule*[right=substitution] + {x_1 \ltdyn x_2 \vdash x_1 \ltdyn \upcast{A}{A'}x_2 : A \ltdyn A' \and x_1 \ltdyn x_2' : A \ltdyn A' \vdash V_u[x_1] \ltdyn x_2' : A'} + {x_1 : A \ltdyn x_2 : A \vdash V_u[x_1] \ltdyn \upcast{A}{A'} x_2 : A'} + \end{mathpar} + The other direction is essentially the same, but swapping $V_u$ and + the upcast. +\end{proof} + +The other key ingredient to the uniqueness theorems is the +\emph{$\eta$ principle} and \emph{congruence rules} for each type. +% +The reason for this is that to show that an implementation of a cast +$x : A \vdash V_u : A'$ is correct, we have to show that it is less +than and greater than \emph{variables}: $x : A \ltdyn V_u[x]$ and $x +\ltdyn x' \vdash V_u[x] \ltdyn x'$. +% +Since we know nothing about a variable except it's type, the only way +to proceed is to $\eta$ expand it. +% +The uniqueness principles for casts arise when the two sides of the +cast have the \emph{same} top-level connective, and thus the +\emph{same} $\eta$ principle, so we $\eta$ expand both the lower +bounding and upper bounding variable, and the cast itself is a kind of +$\eta$-expansion \emph{up to cast at smaller type}. + +% TODO: can we take advantage of duality??? +%% With the large number of connectives comes a large number of proofs. +%% % +%% For each connective, we need four proofs: left and right rules for the +%% upcast and left and right rules for the downcast. +%% % +%% However, we can take advantage of the duality between upcasts and +%% downcasts and the duality between $\ltdyn$ and $\gtdyn$ to save some +%% effort, so that if we constrain our proof, we can mechanically turn a +%% single case, say the left rule for upcast into proofs of the other 3 +%% cases. +%% % +%% In order for this duality to be \emph{perfect}, we use the version of +%% casts that are \emph{not} assumed to be + \section{Contract Translation to Call-by-push-value} To show the soundness of our model, and demonstrate its relationship @@ -2113,6 +2751,23 @@ the limit as $i \to \infty$. equivalent to the graduality ordering. \end{proof} +In fact, we can prove the converse, that at least for the term case, +our LR is \emph{complete} with respect to contextual graduality + +\begin{lemma}{Logical Preorder is Complete wrt Contextual Preorder} + For any $\apreorder$, if $\Gamma \vDash M \ctxize \apreorder N \in + \u B$, then $\Gamma \vDash M \ilrof\apreorder \omega {} N \in \u B$. +\end{lemma} +\begin{proof} + Let $S_1 \ilrof \apreorder i {\u B} S_2$ and $\gamma_1 \ilrof + \apreorder i \Gamma \gamma_2$. We need to show that + \[ + S_1[M[\gamma_1]] \ix\apreorder i S_2[N[\gamma_2]] + \] + We use \emph{reflexivity} of the relation: + TODO: adapt the old proof of this below +\end{proof} + This establishes that our logical relation can prove graduality, so it only remains to show that our \emph{inequational theory} implies our logical relation. @@ -2192,7 +2847,40 @@ limit is a consequence. TODO \end{lemma} -% Lemma: relation is a module of the ordering/infinite relation +\begin{lemma}{$\precltdyn$ and $\ltdynsucc$ are Models of CBPV} + \begin{enumerate} + \item If $\Gamma \vdash M_1 \ltdyn M_2 : \u B$, then + \[ \Gamma \vDash M_1 \ix\precltdyn \omega M_2 \in \u B \] + and + \[ \Gamma \vDash M_1 \ix\ltdynsucc \omega M_2 \in \u B \] + \item If $\Gamma \vdash V_1 \ltdyn V_2 : A$, then + \[ \Gamma \vDash V_1 \ix\precltdyn \omega V_2 \in A + \] + \[ \Gamma \vDash V_1 \ix\ltdynsucc \omega V_2 \in A + \] + \item If $\Gamma \pipe \bullet : \u B \vdash S_1 \ltdyn S_2 : \u C$ , then + \[\Gamma \pipe \bullet : \u B \vDash S_1 \ix\precltdyn\omega S_2 \in \u C \] + and + \[\Gamma \pipe \bullet : \u B \vDash S_1 \ix\ltdynsucc\omega S_2 \in \u C \] + \end{enumerate} +\end{lemma} + +\begin{theorem}{$\ctxize \ltdyn$ is a Model of CBPV} + \begin{enumerate} + \item If $\Gamma \vdash M_1 \ltdyn M_2 : \u B$, then + \[ \Gamma \vDash M_1 \ctxize\ltdyn M_2 \in \u B \] + \item If $\Gamma \vdash V_1 \ltdyn V_2 : A$, then + \[ \Gamma \vDash V_1 \ctxize\ltdyn V_2 \in A \] + \item If $\Gamma \pipe \bullet : \u B \vdash S_1 \ltdyn S_2 : \u C$, then + \[\Gamma \pipe \bullet : \u B \vDash S_1 \ctxize\ltdyn S_2 \in \u C \] + \end{enumerate} +\end{theorem} +\begin{proof} + TODO: prose + Logical by prev lemma + Logical => Contextual by soundness + Contextual of the 2 => Contextual ltdyn by earlier lemma +\end{proof} \begin{figure} \begin{mathpar}