diff --git a/paper/gtt.tex b/paper/gtt.tex index cca4317669a07f899ae94a61d8fa3401333a720c..167d630a272a5f3dd256f1adbe9cbb764c1718bc 100644 --- a/paper/gtt.tex +++ b/paper/gtt.tex @@ -3485,7 +3485,28 @@ morphisms from smaller ones. If $E \ltdyn E'$ then $\simp E \ltdyn \simp{E'} in simple CBPV$ \end{theorem} \begin{proof} - ... + $\beta$ axioms need to reduce administrative redices ugh + \begin{enumerate} + \item TODO: $\beta, \eta$ axioms (Value $\beta$ principles have + admin redexes, Value $\eta$?, Comp $\eta$ involve stacks, Comp + $\beta$ are probably trivial) + \item All compatibility rules are translated to compatibility rules + in simple CBPV, usually using an $\u F$-binding. + \item Substitution axioms + \item Stack axioms + We need to show for $S$ a complex stack, + that + \[ \sem{S[\err]} \equidyn \err \] + By stack compositionality we know + \[ \sem{S[\err]} \equidyn \sem{S[\force z]}[{\thunk \err/z}] \] + \begin{align*} + \sem{S[\force z]}[{\thunk \err/z}] + &\equidyn \sem{S[\force z]}[\thunk {(\bindXtoYinZ \err y \err)}/z]\tag{Stacks preserve $\err$}\\ + &\equidyn + \bindXtoYinZ \err y \sem{S[\force z]}[{\thunk \err/z}] \tag{$S[\force z]$ is linear in $z$}\\ + &\equidyn \err \tag{Stacks preserve $\err$} + \end{align*} + \end{enumerate} \end{proof} \begin{lemma}[De-complexification is equivalent to Identity]