From 8cf7e913dc482a455ed887bc2fa6ef305a0016ea Mon Sep 17 00:00:00 2001
From: Amal Ahmed <amal@ccs.neu.edu>
Date: Mon, 9 Jul 2018 13:20:56 +0200
Subject: [PATCH] figures smaller

---
 paper/gtt.tex | 22 ++++++++++++++++++++++
 1 file changed, 22 insertions(+)

diff --git a/paper/gtt.tex b/paper/gtt.tex
index 4f482eb..8495b51 100644
--- a/paper/gtt.tex
+++ b/paper/gtt.tex
@@ -4435,6 +4435,7 @@ a truly dynamically typed style of programming, where one can perform
 case-analysis on the dynamic types at runtime, in addition to the type
 assertions provided by upcasts and downcasts.  
 \begin{figure}
+\begin{small}
   \begin{mathpar}
     \inferrule
     {\Gamma\pipe \Delta \vdash V : \dynv\\
@@ -4470,6 +4471,7 @@ assertions provided by upcasts and downcasts.
           {\dncast{\dynv\to\dync}{\dync}\bullet}
           {\dncast{\u F\dynv}{\dync}\bullet}}\quad(\dync\eta)
   \end{mathpar}
+  \end{small}
   \caption{Natural Dynamic Type Extension of GTT}
 \end{figure}
 
@@ -4717,6 +4719,7 @@ in the ep pairs used in Definition~\ref{def:scheme-like-type-interp}.
 \end{shortonly}
 
 \begin{figure}
+\begin{small}
 \begin{mathpar}
   1 \ltdyn \bool\and
   A + A \equidyn \bool \times A\and
@@ -4782,6 +4785,7 @@ in the ep pairs used in Definition~\ref{def:scheme-like-type-interp}.
 
   \end{longonly}
 \end{mathpar}
+\end{small}
 \vspace{-0.4in}
 \caption{Scheme-like Extension to GTT}
 \label{fig:scheme}
@@ -4894,6 +4898,7 @@ As in previous work, this is proven correct by an analysis of the type
 dynamism relation.
 
 \begin{figure}
+\begin{small}
   \begin{mathpar}
       x:\sem{A} \vdash \sem{\upcast{A}{A'}} : \sem{A'}\and
       \bullet:\sem{\u B'} \vdash \sem{\dncast{\u B}{\u B'}} : \sem{\u B}\\
@@ -4961,6 +4966,7 @@ dynamism relation.
       \bindXtoYinZ \bullet {x'} \sdncast{\u B}{\u B'}\force x'
     \end{array}
   \end{mathpar}
+  \end{small}
   \caption{Cast to Contract Translation}
   \label{fig:cast-to-contract}
 \end{figure}
@@ -4979,6 +4985,7 @@ system except the $A \ltdyn \dynv$ and similar $\u B \ltdyn \dync$
 rules use the $\dynv, \dync$ are top rules and transitivity.
 
 \begin{figure}
+\begin{small}
   \begin{mathpar}
   \inferrule
   {A \in \{\dynv, 1\}}
@@ -5029,6 +5036,7 @@ rules use the $\dynv, \dync$ are top rules and transitivity.
   {A \ltdyn A' \and \u B \ltdyn \u B'}
   {A \to \u B \ltdyn A' \to \u B'}
   \end{mathpar}
+  \end{small}
   \caption{Normalized Type Dynamism Relation}
   \label{fig:normalized}
 \end{figure}
@@ -6494,6 +6502,7 @@ Dual to the treatment of values, stacks consist only of
 \emph{elimination} forms.
 
 \begin{figure}
+\begin{small}
   \begin{mathpar}
   \begin{array}{lcl}
     A & \bnfdef & X \mid \mu X.A \mid U \u B \mid 0 \mid A_1 + A_2 \mid 1 \mid A_1 \times A_2 \\
@@ -6511,10 +6520,12 @@ Dual to the treatment of values, stacks consist only of
     S & ::= & \bullet \mid \bindXtoYinZ S x M \mid S\, V \mid \pi S \mid \pi' S
   \end{array}
   \end{mathpar}
+  \end{small}
   \caption{Operational CBPV Syntax}
 \end{figure}
 
 \begin{longfigure}
+\begin{small}
   \begin{mathpar}
     \inferrule
     {}
@@ -6624,10 +6635,12 @@ Dual to the treatment of values, stacks consist only of
     {\Gamma \vdash M \ltdyn M' : {\nu \u Y. \u B}}
     {\Gamma \vdash \unroll M \ltdyn \unroll M' : \u B[{\nu \u Y. \u B}/\u Y]}
   \end{mathpar}
+  \end{small}
   \caption{CBPV Inequational Theory (Congruence Rules)}
 \end{longfigure}
 
 \begin{longfigure}
+\begin{small}
   \begin{mathpar}
     \inferrule
     {}
@@ -6713,10 +6726,12 @@ Dual to the treatment of values, stacks consist only of
     {\Gamma \vdash M : \nu \u Y. \u B}
     {\Gamma \vdash M \equidyn \rollty{\nu \u Y.\u B}\unroll M : \nu \u Y. \u B}
   \end{mathpar}
+  \end{small}
   \caption{CBPV $\beta, \eta$ rules}
 \end{longfigure}
 
 \begin{longfigure}
+\begin{small}
   \begin{mathpar}
     \inferrule
     {}
@@ -6775,6 +6790,7 @@ Dual to the treatment of values, stacks consist only of
       \Gamma \pipe \u B \vdash S_1 \ltdyn S_2 : \u B'}
     {\Gamma \pipe \u B \vdash S_1'[S_1] \ltdyn S_2'[S_2] : \u B''}
   \end{mathpar}
+  \end{small}
   \caption{CBPV logical and error rules}
 \end{longfigure}
 
@@ -7474,6 +7490,7 @@ defined for terms of type $\cdot \vdash M : \u F (1+1)$, which we
 consider to be the type of whole programs.
 
 \begin{figure}
+\begin{small}
   \begin{mathpar}
     S[\err] \stepzero \err\\
     S[\caseofXthenYelseZ{\inl V}{x_1. M_1}{x_2. M_2}] \stepzero S[M_1[V/x_1]]\\
@@ -7496,6 +7513,7 @@ consider to be the type of whole programs.
     {M_1 \stepsin{i} M_2 \and M_2 \bigstepsin j M_3}
     {M_1 \bigstepsin {i+j} M_3}
   \end{mathpar}
+  \end{small}
   \caption{CBPV Operational Semantics}
   \label{fig:cbpv-operational-semantics}
 \end{figure}
@@ -7570,6 +7588,7 @@ And define a typing $C : (\Gamma \vdash \u B) \Rightarrow (\Gamma'
 \vdash C[M] : \u B'$ (and similarly for values/stacks).
 
 \begin{longfigure}
+\begin{small}
   \begin{mathpar}
     \begin{array}{rcl}
     C_V  & ::= [\cdot] & \rollty{\mu X.A}C_V \mid \inl{C_V} \mid \inr{C_V} \mid \\
@@ -7583,6 +7602,7 @@ And define a typing $C : (\Gamma \vdash \u B) \Rightarrow (\Gamma'
     C_S &=& \pi C_S \mid \pi' C_S \mid S\,C_V\mid C_S\,V\mid \bindXtoYinZ {C_S} x M \mid \bindXtoYinZ S x C_M
     \end{array}
   \end{mathpar}
+  \end{small}
   \caption{CBPV Context}
 \end{longfigure}
 
@@ -7848,6 +7868,7 @@ We also get the following ``base case'' of our relation.
 \end{longproof}
 
 \begin{figure}
+\begin{small}
   \begin{mathpar}
     {\itylrof\apreorder{i}{A}} \subseteq \{ \cdot \vdash V : A \}^2
     \qquad\qquad\qquad{\itylrof\apreorder{i}{\u B}}\subseteq \{ \cdot \pipe \u B \vdash S
@@ -7872,6 +7893,7 @@ We also get the following ``base case'' of our relation.
       S_1 \itylr i {\u F A} S_2 & = & \forall j\leq i, V_1 \itylr j A V_2.~ S_1[\ret V_1] \ix\apreorder j \result(S_2[\ret V_2])
     \end{array}
   \end{mathpar}
+  \end{small}
   \caption{Logical Relation from a Preorder $\apreorder$}
   \label{fig:lr}
 \end{figure}
-- 
GitLab