diff --git a/paper/gtt.tex b/paper/gtt.tex
index 989fdbf0c40437653b94bd3eedaa946b31d723ff..bf1a4de1eb17b6d8fbef9dd538cd10a34fbd7c7b 100644
--- a/paper/gtt.tex
+++ b/paper/gtt.tex
@@ -2657,16 +2657,14 @@ We extend the definition to contexts point-wise.
       () \itylr i 1 () &=& \top\\
       (V_1,V_1') \itylr i {A \times A'} (V_2, V_2') &=& V_1 \itylr i A V_2 \wedge V_1' \itylr i {A'} V_2'\\
       % Should this be a roll or not?
-      \rollty {\mu X. A} V_1 \itylr 0 {\mu X. A} \rollty {\mu X. A} V_2 &=& \top\\
-      \rollty {\mu X. A} V_1 \itylr {i+1} {\mu X. A} \rollty {\mu X. A} V_2 &=& V_1 \itylr i {A[\mu X.A/X]} V_2\\
+      \rollty {\mu X. A} V_1 \itylr i {\mu X. A} \rollty {\mu X. A} V_2 &=& i = 0 \vee V_1 \itylr {i-1} {A[\mu X.A/X]} V_2\\
       V_1 \itylr i {U \u B} V_2 &=& \forall j \leq i, S_1 \itylr j {\u B} S_2.~ S_1[\force V_1] \ix\apreorder j \result(S_2[\force V_2]) \\\\
 
       S_1[\bullet V_1] \itylr i {A \to \u B} S_1[\bullet V_2] & = & V_1 \itylr i A V_2 \wedge S_1 \itylr {i}{\u B} S_2\\
       S_1[\pi_1 \bullet] \itylr i {\u B \wedge \u B'} S_2[\pi_1 \bullet] &=& S_1 \itylr i {\u B} S_2\\
       S_1[\pi_2 \bullet] \itylr i {\u B \wedge \u B'} S_2[\pi_2 \bullet] &=& S_1 \itylr i {\u B'} S_2\\
       S_1 \itylr i {\top} S_2 &=& \bot\\
-      S_1[\unroll \bullet] \itylr 0 {\nu \u Y. \u B} S_2[\unroll \bullet] &=& \top\\
-      S_1[\unroll \bullet] \itylr {i+1} {\nu \u Y. \u B} S_2[\unroll \bullet] &=& S_1 \itylr i {\u B[\nu \u Y. \u B/\u Y]} S_2\\
+      S_1[\unroll \bullet] \itylr i {\nu \u Y. \u B} S_2[\unroll \bullet] &=& i = 0 \vee S_1 \itylr {i-1} {\u B[\nu \u Y. \u B/\u Y]} S_2\\
       S_1 \itylr i {\u F A} S_2 & = & \forall j\leq i, V_1 \itylr j A V_2.~ S_1[\ret V_1] \ix\apreorder j \result(S_2[\ret V_2])
     \end{array}
   \end{mathpar}
@@ -3161,19 +3159,216 @@ limit is a consequence.
     \begin{enumerate}
     \item We need to show
       \[ S_1[\pmmuXtoYinZ {\rollty{\mu X.A} V[\gamma_1]} x M[\gamma_1]] \ilr i \result(S_2[M[\gamma_2,V[\gamma_2]/x]]) \]
-      The left side takes $1$ step so if $i \leq 1$ we are done. Otherwise, we need to show
-      \[ S_1[M[\gamma_1,V[\gamma_1]/x]] \ilr {i-1} S_2[M[\gamma_2,V[\gamma_2]/x]] \]
-      which follows by anti-reduction because by assumption, we have
-      \[ S_1[M[\gamma_1,V[\gamma_1]/x]] \ilr {i} S_2[M[\gamma_2,V[\gamma_2]/x]] \]
-    \item The other case is easier, because result is invariant under
-      a step.
+      The left side takes $1$ step to $S_1[M[\gamma_1,V[\gamma_1]/x]]$ and we know
+      \[ S_1[M[\gamma_1,V[\gamma_1]/x]] \ilr i \result (S_2[M[\gamma_2,V[\gamma_2]/x]])  \]
+      by assumption and reflexivity, so by anti-reduction we have
+      \[ S_1[\pmmuXtoYinZ {\rollty{\mu X.A} V[\gamma_1]} x M[\gamma_1]] \ilr {i+1} \result(S_2[M[\gamma_2,V[\gamma_2]/x]]) \]
+      so the result follows by downward-closure.
+      
+    \item For the other direction we need to show
+      \[ S_1[M[\gamma_1,V[\gamma_1]/x]] \ilr i \result(S_2[\pmmuXtoYinZ {\rollty{\mu X.A} V[\gamma_2]} x M[\gamma_2]]) \]
+      Since results are invariant under steps, this is the same as
+      \[ S_1[M[\gamma_1,V[\gamma_1]/x]] \ilr i \result(S_2[M[\gamma_2,V[\gamma_2/x]]]) \]
+      which follows by reflexivity and assumptions about the stacks
+      and substitutions.
     \end{enumerate}
   \item $\mu X.A-\eta$:
     \begin{enumerate}
     \item We need to show for any $\Gamma, x : \mu X. A \vdash M : \u B$,
       and appropriate substitutions and stacks,
-      \[ S_1[\pmmuXtoYinZ {\rollty{\mu X.A}} {\gamma_1(x)} M] \ilr i \result(S_2[M[\gamma_2]]) \]
-      TODO: finish
+      \[ S_1[\pmmuXtoYinZ {\rollty{\mu X.A} {\gamma_1(x)}} {y}  M[\rollty{\mu X.A}y/x][\gamma_1]] \ilr i \result(S_2[M[\gamma_2]]) \]
+      By assumption, $\gamma_1(x) \itylr i {\mu X.A} \gamma_2(x)$, so we know
+      \[ \gamma_1(x) = \rollty{\mu X.A} V_1 \]
+      and
+      \[ \gamma_2(x) = \rollty{\mu X.A} V_2 \]
+      so the left side takes a step:
+      \[ S_1[\pmmuXtoYinZ {\rollty{\mu X.A} {\gamma_1(x)}} {y}  M[\rollty{\mu X.A}y/x][\gamma_1]] \bigstepsin{1} S_1[M[\rollty{\mu X.A}y/x][\gamma_1][V_1/y]] = S_1[M[\rollty{\mu X.A}V_1/x][\gamma_1]] = S_1[M[\gamma_1]] \]
+      and by refleixivity and assumptions we know
+      \[ S_1[M[\gamma_1]] \ilr {i} \result(S_2[M[\gamma_2]]) \]
+      so by anti-reduction we know 
+      \[ S_1[\pmmuXtoYinZ {\rollty{\mu X.A} {\gamma_1(x)}} {y}  M[\rollty{\mu X.A}y/x][\gamma_1]] \ilr {i+1} \result(S_2[M[\gamma_2]]) \]
+      so the result follows by downward closure.
+    \item Similarly, to show
+      \[ S_1[M[\gamma_1]] \ilr i \result(S_2[\pmmuXtoYinZ {\rollty{\mu X.A} {\gamma_2(x)}} {y}  M[\rollty{\mu X.A}y/x][\gamma_2]]) \]
+      by the same reasoning as above, $\gamma_2(x) = \rollty{\mu X.A}V_2$, so because result is invariant under reduction we need to show
+      \[ S_1[M[\gamma_1]] \ilr i \result(S_2[M[\gamma_2]]) \]
+      which follows by assumption and reflexivity.
+    \end{enumerate}
+  \item $\nu \u Y. \u B-\beta$
+    \begin{enumerate}
+    \item We need to show
+      \[ S_1[\unroll \rollty{\nu \u Y. \u B} M[\gamma_1]] \ix\apreorder i
+      \result(S_2[M[\gamma_2]]) \]
+      By the operational semantics,
+      \[ S_1[\unroll \rollty{\nu \u Y. \u B} M[\gamma_1]] \bigstepsin{1} S_1[M[\gamma_1]] \]
+      and by reflexivity and assumptions
+      \[ S_1[M[\gamma_1]] \ix\apreorder {i} S_2[M[\gamma_2]] \]
+      so the result follows by anti-reduction and downward closure.
+    \item We need to show
+      \[ S_1[M[\gamma_1]] \ix\apreorder i \result(S_2[\unroll \rollty{\nu \u Y. \u B} M[\gamma_2]]) \]
+      By the operational semantics and invariance of result under reduction this is equivalent to
+      \[ S_1[M[\gamma_1]] \ix\apreorder i \result(S_2[M[\gamma_2]]) \]
+      which follows by assumption.
+    \end{enumerate}
+  \item $\nu \u Y. \u B-\eta$
+    \begin{enumerate}
+    \item We need to show
+      \[ S_1[\roll \unroll M[\gamma_1]] \ix\apreorder i \result(S_2[M[\gamma_2]]) \]
+      by assumption, $S_1 \itylr i {\nu \u Y.\u B} S_2$, so
+      \[ S_1 = S_1'[\unroll \bullet] \]
+      and therefore the left side reduces:
+      \begin{align*}
+         S_1[\roll \unroll M[\gamma_1]]
+         &= S_1'[\unroll\roll\unroll M[\gamma_1]]\\
+         &\bigstepsin{1} S_1'[\unroll M[\gamma_1]]\\
+         &= S_1[M[\gamma_1]]
+      \end{align*}
+      and by assumption and reflexivity,
+      \[ S_1[M[\gamma_1]] \ix\apreorder i \result(S_2[M[\gamma_2]]) \]
+      so the result holds by anti-reduction and downward-closure.
+    \item Similarly, we need to show
+      \[ S_1[M[\gamma_1]] \ix\apreorder i \result(S_2[\roll\unroll M[\gamma_2]])\]
+      as above, $S_1 \itylr i {\nu \u Y.\u B} S_2$, so we know
+      \[ S_2 = S_2'[\unroll\bullet] \]
+      so
+      \[ \result(S_2[\roll\unroll M[\gamma_2]]) = \result(S_2[M[\gamma_2]])\]
+      and the result follows by reflexivity, anti-reduction and downard closure.
+    \end{enumerate}
+  \item $0\eta$ Let $\Gamma, x : 0 \vdash M : \u B$.
+    \begin{enumerate}
+    \item We need to show
+      \[ S_1[\absurd \gamma_1(x)] \ix\apreorder i \result(S_2[M[\gamma_2]])\]
+      By assumption $\gamma_1(x) \itylr i 0 \gamma_2(x)$ but this is a contradiction
+    \item Other direction is the same contradiction.
+    \end{enumerate}
+  \item $+\eta$. Let $\Gamma , x:A_1 + A_2 \vdash M : \u B$
+    \begin{enumerate}
+    \item We need to show
+      \[ S_1[\caseofXthenYelseZ {\gamma_1(x)} {x_1. M[\inl x_1/x][\gamma_1]}{x_2. M[\inr x_2/x][\gamma_1]}]
+      \ix\apreorder i \result(S_2[M[\gamma_2]]) \] by assumption
+      $\gamma_1(x) \itylr i {A_1 + A_2} \gamma_2(x)$, so either it's
+      an $\inl$ or $inr$. The cases are symmetric so assume
+      $\gamma_1(x) = \inl V_1$.
+      Then
+      \begin{align*}
+         S_1[\caseofXthenYelseZ {\gamma_1(x)} {x_1. M[\inl x_1/x][\gamma_1]}{x_2. M[\inr x_2/x][\gamma_1]}]
+         &=S_1[\caseofXthenYelseZ {\inl V_1} {x_1. M[\inl x_1/x][\gamma_1]}{x_2. M[\inr x_2/x][\gamma_1]}]\\
+         &\bigstepsin{0} S_1[M[\inl V_1/x][\gamma_1]]\\
+         &= S_1[M[\gamma_1]]
+      \end{align*}
+      and so by anti-reduction it is sufficient to show
+      \[ S_1[M[\gamma_1]] \ix\apreorder i S_2[M[\gamma_2]]\]
+      which follows by reflexivity and assumptions.
+    \item Similarly, We need to show
+      \[
+      \result(S_1[M[\gamma_1]])
+      \ix\apreorder i
+      \result(S_2[\caseofXthenYelseZ {\gamma_2(x)} {x_1. M[\inl x_1/x][\gamma_2]}{x_2. M[\inr x_2/x][\gamma_2]}])
+      \]
+      and by assumption $\gamma_1(x) \itylr i {A_1 + A_2}
+      \gamma_2(x)$, so either it's an $\inl$ or $inr$. The cases are
+      symmetric so assume $\gamma_2(x) = \inl V_2$.
+      Then
+      \[ S_2[\caseofXthenYelseZ {\gamma_2(x)} {x_1. M[\inl x_1/x][\gamma_2]}{x_2. M[\inr x_2/x][\gamma_2]}] \bigstepsin{0}
+      S_2[M[\gamma_2]]
+      \]
+      So the result holds by invariance of result under reduction,
+      reflexivity and assumptions.
+    \end{enumerate}
+  \item $1\eta$ Let $\Gamma, x : 1 \vdash M : \u B$
+    \begin{enumerate}
+    \item We need to show
+      \[ S_1[M[()/x][\gamma_1]] \ix\apreorder i \result(S_2[M[\gamma_2]])\]
+      By assumption $\gamma_1(x) \itylr i 1 \gamma_2(x)$ so $\gamma_1(x) = ()$, so this is equivalent to 
+      \[ S_1[M[\gamma_1]] \ix\apreorder i \result(S_2[M[\gamma_2]])\]
+      which follows by reflexivity, assumption.
+    \item Opposite case is similar.
+    \end{enumerate}
+  \item $\times\eta$ Let $\Gamma, x : A_1\times A_2 \vdash M : \u B$
+    \begin{enumerate}
+    \item We need to show
+      \[ S_1[\pmpairWtoXYinZ x {x_1}{y_1} M[(x_1,y_1)/x][\gamma_1]] \ix\apreorder i \result(S_2[M[\gamma_2]]) \]
+      By assumption $\gamma_1(x) \itylr i {A_1\times A_2} \gamma_2(x)$, so $\gamma_1(x) = (V_1,V_2)$, so
+      \begin{align*}
+        S_1[\pmpairWtoXYinZ x {x_1}{y_1} M[(x_1,y_1)/x][\gamma_1]]
+        &= S_1[\pmpairWtoXYinZ {(V_1,V_2)} {x_1}{y_1} M[(x_1,y_1)/x][\gamma_1]]\\
+        &\bigstepsin{0} S_1[M[(V_1,V_2)/x][\gamma_1]]\\
+        &= S_1[M[\gamma_1]]
+      \end{align*}
+      So by anti-reduction it is sufficient to show
+      \[ S_1[M[\gamma_1]] \ix\apreorder i \result(S_2[M[\gamma_2]]) \]
+      which follows by reflexivity, assumption.
+    \item Opposite case is similar.
+    \end{enumerate}
+  \item $U\eta$ Let $\Gamma \vdash V : U \u B$
+    \begin{enumerate}
+    \item We need to show that
+      \[ \thunk\force V[\gamma_1] \itylr i {U \u B} V[\gamma_2] \]
+      So assume $S_1 \itylr j {\u B} S_2$ for some $j\leq i$, then we need to show
+      \[ S_1[\force \thunk\force V[\gamma_1]] \ix\apreorder j \result(S_2[\force V[\gamma_2]])\]
+      The left side takes a step:
+      \[ S_1[\force \thunk\force V[\gamma_1]] \bigstepsin{0} S_1[\force V[\gamma_1]] \]
+      so by anti-reduction it is sufficient to show
+      \[ S_1[\force V[\gamma_1]] \ix\apreorder j \result(S_2[\force V[\gamma_2]]) \]
+      which follows by assumption.
+    \item Opposite case is similar.
+    \end{enumerate}
+  \item $F\eta$
+    \begin{enumerate}
+    \item We need to show that given $S_1 \itylr i {\u F A} S_2$,
+      \[ S_1[\bindXtoYinZ \bullet x \ret x] \itylr i {\u F A} S_2 \]
+      So assume $V_1 \itylr j A V_2$ for some $j\leq i$, then we need to show
+      \[ S_1[\bindXtoYinZ \bullet {\ret V_1} \ret x] \ix\apreorder j \result(S_2[\ret V_2])
+      \]
+      The left side takes a step:
+      \[ S_1[\bindXtoYinZ \bullet {\ret V_1} \ret x] \bigstepsin{0} S_1[\ret V_1]\]
+      so by anti-reduction it is sufficient to show
+      \[ S_1[\ret V_1] \ix\apreorder j \result(S_2[\ret V_2])\]
+      which follows by assumption
+    \item Opposite case is similar.
+    \end{enumerate}
+  \item $\to\eta$ Let $\Gamma \vdash M : A \to \u B$
+    \begin{enumerate}
+    \item We need to show
+      \[ S_1[(\lambda x:A. M[\gamma_1]\, x)] \ix\apreorder i \result(S_2[M[\gamma_2]])
+      \]
+      by assumption that $S_1 \itylr i {A \to \u B} S_2$, we know
+      \[ S_1 = S_1'[\bullet\, V_1]\]
+      so the left side takes a step:
+      \begin{align*}
+         S_1[(\lambda x:A. M[\gamma_1]\, x)]
+         &= S_1'[(\lambda x:A. M[\gamma_1]\, x)\, V_1]\\
+         &\bigstepsin{0} S_1'[M[\gamma_1]\, V_1]\\
+         &= S_1[M[\gamma_1]]
+      \end{align*}
+      So by anti-reduction it is sufficient to show
+      \[ S_1[M[\gamma_1]] \ix\apreorder i \result(S_2[M[\gamma_2]])\]
+      which follows by reflexivity, assumption.
+    \item Opposite case is similar.
+    \end{enumerate}
+  \item $\with\eta$ Let $\Gamma \vdash M : \u B_1 \with \u B_2$
+    \begin{enumerate}
+    \item We need to show
+      \[ S_1[\pair{\pi M[\gamma_1]}{\pi' M[\gamma_1]}] \ix\apreorder i \result(S_1[M[\gamma_2]]) \]
+      by assumption, $S_1 \itylr i {\u B_1 \with \u B_2} S_2$ so
+      either it starts with a $\pi$ or $\pi'$ so assume that $S_1 =
+      S_1'[\pi \bullet]$ ($\pi'$ case is similar).
+      Then the left side reduces
+      \begin{align*}
+        S_1[\pair{\pi M[\gamma_1]}{\pi' M[\gamma_1]}]
+        &= S_1'[\pi\pair{\pi M[\gamma_1]}{\pi' M[\gamma_1]}]\\
+        &\bigstepsin{0} S_1'[\pi M[\gamma_1]]\\
+        &= S_1[M[\gamma_1]]
+      \end{align*}
+      So by anti-reduction it is sufficient to show
+      \[ S_1[M[\gamma_1]] \ix\apreorder i \result(S_2[M[\gamma_2]]) \]
+      which follows by reflexivity, assumption.
+    \item Opposite case is similar.
+    \end{enumerate}
+  \item $\top\eta$ Let $\Gamma \vdash M : \top$
+    \begin{enumerate}
+    \item In either case, we assume we are given $S_1 \itylr i \top
+      S_2$, but this is a contradiction.
     \end{enumerate}
   \end{enumerate}
 \end{proof}