diff --git a/paper/gtt.tex b/paper/gtt.tex
index de2b0c9106826730ad3b6afc91cbe99f6d5618d6..9e4a9e4140e4f924d10ab0be9fc8667c98a6d9f3 100644
--- a/paper/gtt.tex
+++ b/paper/gtt.tex
@@ -3022,49 +3022,58 @@ type:
 \begin{figure}
   \begin{mathpar}
     \inferrule
-        {\Gamma\pipe \Delta \vdash V : \dynv\\
-          \Gamma,x_1 : 1\pipe \Delta \vdash E_1 : T\\
-          \Gamma,x_\times : \dynv\times\dynv\pipe \Delta \vdash E_\times : T\\
-          \Gamma,x_+ : \dynv+\dynv\pipe \Delta \vdash E_+ : T\\
-          \Gamma,x_U : U\dync \pipe \Delta \vdash E_U : T\\
-        }
-        {\Gamma\pipe \Delta \vdash \dyncaseofXthenOnePairSumU {V} {x_{1}. E_1}{x_{\times}. E_{\times}}{x_{+}. E_{+}}{x_{U}. E_U} : T} 
-
-        \dyncaseofXthenOnePairSumU {(\upcast{G}{\dynv}V)} {x_{1}. E_1}{x_{\times}. E_{\times}}{x_{+}. E_{+}}{x_{U}. E_U} \equidyn E_{G}[V/x_G]\qquad(\dynv\beta)\\
-
-        \inferrule
-            {\Gamma , x : \dynv \pipe \Delta \vdash E : \u B}
-            {E \equidyn \dyncaseofXthenOnePairSumU x
-              {x_1. E[\upcast{1}{\dynv}/x_1]}
-              {x_{\times}. E[\upcast{{\times}}{\dynv}/x_{\times}]}
-              {x_+. E[\upcast{+}{\dynv}/x_+]}
-              {x_U. E[\upcast{U}{\dynv}/x_U]}}\quad(\dynv\eta)\\
-
-            {\dncast{\u F 1}{\u F \dynv}\ret V \equidyn \dyncaseofXthenYelseZ V {x_1. \ret x_1}{\els \err}}\\
-            {\dncast{\u F(\dynv\times\dynv)}{\u F \dynv}\ret V \equidyn \dyncaseofXthenYelseZ V {x_\times. \ret x_\times}{\els \err}}\\
-            {\dncast{\u F(\dynv + \dynv)}{\u F \dynv}\ret V \equidyn \dyncaseofXthenYelseZ V {x_+. \ret x_+}{\els \err}}\\  
-            {\dncast{\u F U\dync}{\u F\dynv}\ret V \equidyn \dyncaseofXthenYelseZ V {x_U. \ret x_U}{\els \err}}\\
-            
-            \inferrule
-                {\Gamma \pipe \Delta \vdash M_{\to} : \dynv \to \dync\\
-                  \Gamma \pipe \Delta \vdash M_{\with} : \dync \with \dync\\
-                  \Gamma \pipe \Delta \vdash M_{\u F} : \u F}
-                {\Gamma \pipe \Delta \vdash \dyncocaseWithFunF{M_{\with}}{M_{\to}}{M_{\u F}} : \u B}
-
-                \dncast{\u G}{\dync}\dyncocaseWithFunF{M_{\with}}{M_{\to}}{M_{\u F}} \equidyn M_{\u G}\quad(\dync\beta)\\
-                       {\bullet : \dync \vdash \bullet
-                         \equidyn
-                         \dyncocaseWithFunF
-                             {\dncast{\dync\with\dync}{\dync}\bullet}
-                             {\dncast{\dynv\to\dync}{\dync}\bullet}
-                             {\dncast{\u F\dynv}{\dync}\bullet}}\quad(\dync\eta)\\
-
-                       \force\upcast{U(\dync\with\dync)}{U\dync}V \equidyn \dyncocaseWithFunF{\force V}{\err}{\err}\\
-                       \force\upcast{U(\dynv \to \dync)}{U\dync}V \equidyn \dyncocaseWithFunF{\err}{\force V}{\err}\\
-                       \force\upcast{U\u F\dynv}{U\dync}V \equidyn \dyncocaseWithFunF{\err}{\err}{\force V}\\
+    {\Gamma\pipe \Delta \vdash V : \dynv\\
+      \Gamma,x_1 : 1\pipe \Delta \vdash E_1 : T\\
+      \Gamma,x_\times : \dynv\times\dynv\pipe \Delta \vdash E_\times : T\\
+      \Gamma,x_+ : \dynv+\dynv\pipe \Delta \vdash E_+ : T\\
+      \Gamma,x_U : U\dync \pipe \Delta \vdash E_U : T\\
+    }
+    {\Gamma\pipe \Delta \vdash \dyncaseofXthenOnePairSumU {V} {x_{1}. E_1}{x_{\times}. E_{\times}}{x_{+}. E_{+}}{x_{U}. E_U} : T}\and
+
+    \dyncaseofXthenOnePairSumU {(\upcast{G}{\dynv}V)} {x_{1}. E_1}{x_{\times}. E_{\times}}{x_{+}. E_{+}}{x_{U}. E_U} \equidyn E_{G}[V/x_G]\qquad(\dynv\beta)\and
+
+    \inferrule
+    {\Gamma , x : \dynv \pipe \Delta \vdash E : \u B}
+    {E \equidyn \dyncaseofXthenOnePairSumU x
+      {x_1. E[\upcast{1}{\dynv}/x_1]}
+      {x_{\times}. E[\upcast{{\times}}{\dynv}/x_{\times}]}
+      {x_+. E[\upcast{+}{\dynv}/x_+]}
+      {x_U. E[\upcast{U}{\dynv}/x_U]}}\quad(\dynv\eta)\and
+        
+    \inferrule
+    {\Gamma \pipe \Delta \vdash M_{\to} : \dynv \to \dync\\
+      \Gamma \pipe \Delta \vdash M_{\with} : \dync \with \dync\\
+      \Gamma \pipe \Delta \vdash M_{\u F} : \u F}
+    {\Gamma \pipe \Delta \vdash \dyncocaseWithFunF{M_{\with}}{M_{\to}}{M_{\u F}} : \u B}\and
+
+    \dncast{\u G}{\dync}\dyncocaseWithFunF{M_{\with}}{M_{\to}}{M_{\u F}} \equidyn M_{\u G}\quad(\dync\beta)\and
+
+    {\bullet : \dync \vdash \bullet
+      \equidyn
+      \dyncocaseWithFunF
+          {\dncast{\dync\with\dync}{\dync}\bullet}
+          {\dncast{\dynv\to\dync}{\dync}\bullet}
+          {\dncast{\u F\dynv}{\dync}\bullet}}\quad(\dync\eta)
   \end{mathpar}
   \caption{Natural Dynamic Type Extension of GTT}
 \end{figure}
+
+The axioms we choose might seem to underspecify the dynamic type, but
+because of the uniqueness of adjoints, the following are derivable.
+\begin{lemma}[Natural Dynamic Type Extension Theorems]
+  The following are derivable in GTT with the natural dynamic type extension
+  \begin{mathpar}
+    {\dncast{\u F 1}{\u F \dynv}\ret V \equidyn \dyncaseofXthenYelseZ V {x_1. \ret x_1}{\els \err}}\\
+    {\dncast{\u F(\dynv\times\dynv)}{\u F \dynv}\ret V \equidyn \dyncaseofXthenYelseZ V {x_\times. \ret x_\times}{\els \err}}\\
+    {\dncast{\u F(\dynv + \dynv)}{\u F \dynv}\ret V \equidyn \dyncaseofXthenYelseZ V {x_+. \ret x_+}{\els \err}}\\  
+    {\dncast{\u F U\dync}{\u F\dynv}\ret V \equidyn \dyncaseofXthenYelseZ V {x_U. \ret x_U}{\els \err}}\\
+    \force\upcast{U(\dync\with\dync)}{U\dync}V \equidyn \dyncocaseWithFunF{\force V}{\err}{\err}\\
+    \force\upcast{U(\dynv \to \dync)}{U\dync}V \equidyn \dyncocaseWithFunF{\err}{\force V}{\err}\\
+    \force\upcast{U\u F\dynv}{U\dync}V \equidyn \dyncocaseWithFunF{\err}{\err}{\force V}\\
+  \end{mathpar}
+\end{lemma}
+We explore this in more detail with the next dynamic type
+interpretation.
 \end{longonly}
 
 One of the reasons this dynamic type is so odd is that it includes
@@ -3153,10 +3162,14 @@ This leads to the following definition.
   to $\dynv$ by lemma (TODO: ref).  Next, we can define $1$ to be the
   ep pair to $1+1$ defined by the left case and lemma (TODO: ref).
   Then we get the ep pair for $\dynv + \dynv$ by composing the
-  isomorphism $\dynv + \dynv \cong (1+1) \times \dynv$ with the ep
-  pair for $1+1$:
-  \[ \dynv + \dynv \cong (1+1)\times \dynv \triangleleft \dynv \times \dynv \triangleleft \dynv\]
-  And similarly for $\dync \with \dync$:
+  isomorphism $(\dynv + \dynv) \cong ((1+1) \times \dynv)$ with the ep
+
+  pair for $1+1$ using the action of product types on ep pairs (proven
+  as part of lemma \ref{lem:casts-are-ep-pairs}):
+  \[ (\dynv + \dynv) \cong ((1+1)\times \dynv) \triangleleft (\dynv \times \dynv) \triangleleft \dynv \]
+  And similarly for $\dync \with \dync$, using the action of the
+  function type on ep pairs (also proven as part of lemma
+  \ref{lem:casts-are-ep-pairs}):
   \[ \dync \with \dync \cong (1+1) \to \dync \triangleleft \dynv \to \dync \triangleleft \dync \]
 \end{proof}
 
@@ -3830,6 +3843,7 @@ established we only have to manipulate values and stacks, which
 compose much more nicely than effectful terms.
 
 \begin{lemma}[Casts are EP Pairs]
+  \label{lem:casts-are-ep-pairs}
   \begin{enumerate}
   \item For any $A \ltdyn A'$, the casts $(x.\sem{\upcast{A}{A'}x},
     \sem{\dncast{\u F A}{\u F A'}})$ are a value ep pair from