From 55923d3295959c1c8886d5ec01ac29cc9997ec9c Mon Sep 17 00:00:00 2001 From: Max New <maxsnew@gmail.com> Date: Thu, 5 Jul 2018 10:04:45 -0400 Subject: [PATCH] typo, longify some proofs --- paper/gtt.tex | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/paper/gtt.tex b/paper/gtt.tex index fb51fe2..0b1d82a 100644 --- a/paper/gtt.tex +++ b/paper/gtt.tex @@ -7118,7 +7118,7 @@ limit is a consequence. \omega {\u B} S_3$, then $S_1 \itylr i {\u B} S_3$ \end{enumerate} \end{lemma} -\begin{proof} +\begin{longproof} Proof is by mutual lexicographic induction on the pair $(i, A)$ or $(i, \u B)$. All cases are straightforward uses of the inductive hypotheses except the shifts $U, \u F$. @@ -7145,7 +7145,7 @@ limit is a consequence. \[ S_1[\ret V_1] \ix\apreorder j \result(S_2[\ret V_2]) \] which holds by assumption. \end{enumerate} -\end{proof} +\end{longproof} \begin{lemma}{Logical Relation is Quantitatively Transitive (Open Terms)} \begin{enumerate} @@ -7162,7 +7162,7 @@ limit is a consequence. $\Gamma\pipe \bullet : \u B \vDash S_1 \ilr i S_3 \in \u B'$. \end{enumerate} \end{lemma} -\begin{proof} +\begin{longproof} \begin{enumerate} \item By induction on the length of the context, follows from closed value case. \item Assume $\gamma_1 \itylr i \Gamma \gamma_2$ and $S_1 \itylr i {\u B} S_2$. @@ -7181,7 +7181,7 @@ limit is a consequence. \omega A V_3[\gamma_2]$ so the result holds by the closed case. \item Stack case is essentially the same as the value case. \end{enumerate} -\end{proof} +\end{longproof} \begin{corollary}{Logical Relation is Transitive in the Limit} \begin{enumerate} @@ -7488,7 +7488,7 @@ following theorem that says our logical relation is a model of CBPV. following hold: \begin{mathpar} \Gamma \pipe \Delta \vDash E \ix\precltdyn i E' \in \u B\and - \Gamma \pipe \Delta \vDash E' \ix\ltdynsucc i E \in \u B + \Gamma \pipe \Delta \vDash E' \ix{\mathrel{\preceq\gtdyn}} i E \in \u B \end{mathpar} \end{lemma} -- GitLab