diff --git a/formalizations/guarded-cubical/ErrorDomains.agda b/formalizations/guarded-cubical/ErrorDomains.agda index 40264db483036822be0ee7cf9faf319f37b130a3..be603763efc3320aa10069a8e52a1d7fb540ea57 100644 --- a/formalizations/guarded-cubical/ErrorDomains.agda +++ b/formalizations/guarded-cubical/ErrorDomains.agda @@ -61,6 +61,73 @@ data L℧ (X : Set) : Set where ℧ : L℧ X θ : ▹ (L℧ X) → L℧ X +-- Although tempting from an equational perspective, +-- we should not add the restriction that θ (next x) ≡ x +-- for all x. If we did do this, we would end up collapsing +-- everything down to the infinite looping computation, fix θ. +-- The following lemma proves this. + +trivialize' : {X : Set} -> + ((lx : L℧ X) -> θ (next lx) ≡ lx) -> + ▹ ((lx : L℧ X) -> lx ≡ fix θ) → (lx : L℧ X) -> lx ≡ fix θ +trivialize' hθ IH lx = + lx ≡⟨ sym (hθ lx) ⟩ + θ (next lx) ≡⟨ refl ⟩ + θ (λ t -> lx) ≡⟨ ( λ i -> θ λ t -> IH t lx i) ⟩ + θ (λ t -> fix θ) ≡⟨ refl ⟩ + θ (next (fix θ)) ≡⟨ hθ (fix θ) ⟩ + (fix θ ∎) + +trivialize : {X : Set} -> + ((lx : L℧ X) -> θ (next lx) ≡ lx) -> + ((lx : L℧ X) -> (lx ≡ fix θ)) +trivialize hθ = fix (trivialize' hθ) + + + +-- We can prove a similar fact for an arbitrary relation R, +-- so long as it is symmetric, transitive, and a congruence +-- with respect to θ. + +transitive : {X : Type} -> (_R_ : X -> X -> Type) -> Type +transitive {X} _R_ = + {x y z : X} -> x R y -> y R z -> x R z + +symmetric : {X : Type} -> (_R_ : X -> X -> Type) -> Type +symmetric {X} _R_ = + {x y : X} -> x R y -> y R x + +congruence : {X : Type} -> (_R_ : L℧ X -> L℧ X -> Type) -> Type +congruence {X} _R_ = {lx ly : L℧ X} -> ▹ (lx R ly) -> (θ (next lx)) R (θ (next ly)) + + +trivialize2 : {X : Type} (_R_ : L℧ X -> L℧ X -> Type) -> + symmetric _R_ -> + transitive _R_ -> + congruence _R_ -> + ((x : L℧ X) -> (θ (next x)) R x) -> + ((x : L℧ X) -> x R (fix θ)) +trivialize2 {X} _R_ hSym hTrans hCong hθ = fix trivialize2' + where + trivialize2' : + ▹ ((x : L℧ X) -> x R (fix θ)) → (x : L℧ X) -> x R (fix θ) + trivialize2' IH lx = + hTrans + (hSym (hθ lx)) + (hTrans + (hCong (λ t → IH t lx)) + (hθ (fix θ))) + + +-- lx R +-- (θ (next lx)) R +-- (θ (λ t -> fix θ) ≡ +-- (θ (next (fix θ))) R +-- (fix θ) + + +-------------------------------------------------------------------------- + -- Showing that L is a monad