diff --git a/formalizations/guarded-cubical/Semantics/LockStepErrorOrdering.agda b/formalizations/guarded-cubical/Semantics/LockStepErrorOrdering.agda index 0628327889ade0f6166215fcd71d67093bbc026e..7e165bd07c2cc627fa5c0e7caaa67d02bcd43e16 100644 --- a/formalizations/guarded-cubical/Semantics/LockStepErrorOrdering.agda +++ b/formalizations/guarded-cubical/Semantics/LockStepErrorOrdering.agda @@ -34,7 +34,6 @@ open import Common.Common open import Common.Poset.Convenience open import Common.Poset.MonotoneRelation open import Semantics.Lift k --- open import Semantics.ErrorDomains open import Semantics.PredomainInternalHom private @@ -117,6 +116,7 @@ module LiftComp open R-LALC.Inductive (next R-LALC._≾_) renaming (_≾'_ to _≾'AC_) + -- If la L(R ∘ S) lc, then la (LR ∘ LS) lc liftComp→compLift' : ▹ ((la : L℧ A) (lc : L℧ C) -> la ≾'AC lc -> compRel _≾'AB_ _≾'BC_ la lc) -> (la : L℧ A) (lc : L℧ C) -> la ≾'AC lc -> compRel _≾'AB_ _≾'BC_ la lc @@ -145,8 +145,8 @@ module LiftComp module LiftRelTransHet (A B C : Poset ℓ ℓ') -- {ℓ'' : Level} - (R : MonRel A B {ℓ''}) - (S : MonRel B C {ℓ''}) where + (R : MonRel A B ℓ'') + (S : MonRel B C ℓ'') where module R-LALB = LiftRelation ⟨ A ⟩ ⟨ B ⟩ (MonRel.R R) module R-LBLC = LiftRelation ⟨ B ⟩ ⟨ C ⟩ (MonRel.R S) @@ -233,7 +233,10 @@ module LiftPoset (A : Poset ℓ ℓ') where -- ▹ (∀ a b . ∀ (p₁ q₁ : a ≾' b) . p₁ ≡ q₁) ord-prop : BinaryRelation.isPropValued _≾_ - ord-prop = {!!} + ord-prop = prop-≾'→prop-≾ (fix ord-prop') + where + prop-≾'→prop-≾ : BinaryRelation.isPropValued _≾'_ -> BinaryRelation.isPropValued _≾_ + prop-≾'→prop-≾ = transport (λ i -> BinaryRelation.isPropValued (sym unfold-≾ i)) ord-refl-ind : ▹ ((a : L℧ ⟨ A ⟩) -> a ≾ a) -> (a : L℧ ⟨ A ⟩) -> a ≾ a @@ -309,16 +312,17 @@ module LiftPoset (A : Poset ℓ ℓ') where -} -module LiftMonRel (A B : Poset ℓ ℓ') (R : MonRel A B {ℓ''}) where +module LiftMonRel (A B : Poset ℓ ℓ') (R : MonRel A B ℓ'') where module LR = LiftRelation ⟨ A ⟩ ⟨ B ⟩ (MonRel.R R) open LiftPoset open MonRel - ℝ : MonRel (𝕃 A) (𝕃 B) {ℓ''} + ℝ : MonRel (𝕃 A) (𝕃 B) ℓ'' ℝ = record { R = LR._≾_ ; - isAntitone = {!!} ; - isMonotone = {!!} } + is-prop-valued = {!!} ; + is-antitone = {!!} ; + is-monotone = {!!} } {-