
Denotational Semantics for Gradual Typing in Synthetic
Guarded Domain Theory

ERIC GIOVANNINI and MAX S. NEW
We develop a denotational semantics for a gradually typed language with effects that is adequate and proves

the graduality theorem. The denotational semantics is constructed using synthetic guarded domain theory
working in a type theory with a later modality and clock quantification. This provides a remarkably simple

presentation of the semantics, where gradual types are interpreted as ordinary types in our ambient type

theory equipped with an ordinary preorder structure to model the error ordering. This avoids the complexities

of classical domain-theoretic models (New and Licata) or logical relations models using explicit step-indexing

(New and Ahmed). In particular, we avoid a major technical complexity of New and Ahmed that requires two

logical relations to prove the graduality theorem.

By working synthetically we can treat the domains in which gradual types are interpreted as if they were

ordinary sets. This allows us to give a “naïve” presentation of gradual typing where each gradual type is

modeled as a well-behaved subset of the universal domain used to model the dynamic type, and type precision

is modeled as simply a subset relation.

ACM Reference Format:
Eric Giovannini and Max S. New. 2018. Denotational Semantics for Gradual Typing in Synthetic Guarded

Domain Theory. InWoodstock ’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock,
NY . ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
1.1 Gradual Typing and Graduality
Gradual typing allows a language to have both statically-typed and dynamically-typed terms; the

statically-typed terms are type checked at compile time, while type checking for the dynamically-

typed terms is deferred to runtime.

Gradually-typed languages should satisfy two intuitive properties. First, the interaction between

the static and dynamic components of the codebase should be safe – i.e., should preserve the

guarantees made by the static types. In other words, in the static portions of the codebase, type

soundness must be preserved. Second, gradual langugaes should support the smooth migration

from dynamic typing to static typing, in that the programmer can initially leave off the typing

annotations and provide them later without altering the meaning of the program.

Formally speaking, gradually typed languages should satisfy the dynamic gradual guarantee,
originally defined by Siek, Vitousek, Cimini, and Boyland [3]. This property is also referred to as

graduality, by analogy with parametricity. Intuitively, graduality says that in going from a dynamic

to static style should not introduce changes in the meaning of the program. More specifically,

making the types more precise by adding annotations will either result in the same behavior as the

less precise program, or result in a type error.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini and Max S. New

1.2 Current Approaches
Current approaches to proving graduality include the methods of Abstracting Gradual Typing

[2] and the formal tools of the Gradualier [1]. These allow the language developer to start with a

statically typed langauge and derive a gradually typed language that satisfies the gradual guarantee.

The downside is that not all gradually typed languages can be derived from these frameworks, and

moreover, in both approaches the semantics is derived from the static type system as opposed to

the alternative in which the semantics determines the type checking. Without a clear semantic

interpretation of type dynamism, it becomes difficult to extend these techniques to new language

features such as polymorphism.

New and Ahmed have developed a semantic approach to specifying type dynamism in term of

embedding-projection pairs, which allows for a particularly elegant formulation of the gradual

guarantee. Moreover, this approach allows for type-based reasoning using 𝜂-equivalences

The downside of the above approach is that each new language requires a different logical

relation to prove graduality. As a result, many developments using this approach require vast

effort, with many such papers having 50+ pages of proofs. Our aim here is that by mechanizing a

graduality proof in a reusable way, we will provide a framework for other language designers to

use to ensure that their languages satsify graduality.

One approach currently used to prove graduality uses the technique of logical relations. Specifially,
a logical relation is constructed and shown to be sound with respect to observational approximation.

Because the dynamic type is modeled as a non-well-founded recursive type, the logical relation

needs to be paramterized by natural numbers to restore well-foundedness. This technique is known

as a step-indexed logical relation [?]. Reasoning about step-indexed logical relations can be tedious

and error-prone, and there are some very subtle aspects that must be taken into account in the

proofs. Figure ?? shows an example of a step-indexed logical relation for the gradually-typed lambda

calculus.

In particular, the prior approach of New and Ahmed requires two separate logical relations for

terms, one in which the steps of the left-hand term are counted, and another in which the steps

of the right-hand term are counted [?]. Then two terms 𝑀 and 𝑁 are related in the “combined”

logical relation if they are related in both of the one-sided logical relations. Having two separate

logical relations complicates the statement of the lemmas used to prove graduality, becasue any

statement that involves a term stepping needs to take into account whether we are counting steps

on the left or the right. Some of the differences can be abstracted over, but difficulties arise for

properties as fundamental and seemingly straightforward as transitivty.

Specifically, for transitivity, we would like to say that if 𝑀 is related to 𝑁 at index 𝑖 and 𝑁 is

related to 𝑃 at index 𝑖 , then𝑀 is related to 𝑃 at 𝑖 . But this does not actually hold: we requrie that

one of the two pairs of terms be related “at infinity”, i.e., that they are related at 𝑖 for all 𝑖 ∈ N.
Which pair is required to satisfy this depends on which logical relation we are considering, (i.e., is

it counting steps on the left or on the right), and so any argument that uses transitivity needs to

consider two cases, one where𝑀 and 𝑁 must be shown to be related for all 𝑖 , and another where

𝑁 and 𝑃 must be related for all 𝑖 . This may not even be possible to show in some scenarios!

These complications introduced by step-indexing lead one to wonder whether there is a way of

proving graduality without relying on tedious arguments involving natural numbers. An alternative

approach, which we investigate in this paper, is provided by synthetic guarded domain theory, as
discussed below. Synthetic guarded domain theory allows the resulting logical relation to look

almost identical to a typical, non-step-indexed logical relation.

2

Denotational Semantics for Gradual Typing in Synthetic Guarded Domain TheoryWoodstock ’18, June 03–05, 2018, Woodstock, NY

1.3 Contributions
Our main contribution is a framework in Guarded Cubical Agda for proving graduality of a cast

calculus. To demonstrate the feasability and utility of our approach, we have used the framework to

prove graduality for the simply-typed gradual lambda calculus. Along the way, we have developed

an intensional theory of graduality that is of independent interest.

1.4 Proving Graduality in SGDT
In a gradually-typed language, the mixing of static and dynamic code is seamless, in that the

dynamically typed parts are checked at runtime. This type checking occurs at the elimination

forms of the language (e.g., pattern matching, field reference, etc.). Gradual languages are generally

elaborated to a cast calculus, in which the dynamic type checking is made explicit through the

insertion of type casts.
In a cast calculus, there is a relation ⊑ on types such that 𝐴 ⊑ 𝐵 means that 𝐴 is a more precise

type than 𝐵. There a dynamic type ? with the property that 𝐴 ⊑? for all 𝐴. If 𝐴 ⊑ 𝐵, a term𝑀 of

type 𝐴 may be upcasted to 𝐵, written ⟨𝐵 ↢ 𝐴⟩𝑀 , and a term 𝑁 of type 𝐵 may be downcasted to 𝐴,

written ⟨𝐴 ↞ 𝐵⟩𝑁 . Upcasts always succeed, while downcasts may fail at runtime. We also have a

notion of syntatcic term precision. If 𝐴 ⊑ 𝐵, and𝑀 and 𝑁 are terms of type 𝐴 and 𝐵 respectively,

we write 𝑀 ⊑ 𝑁 : 𝐴 ⊑ 𝐵 to mean that 𝑀 is more precise than 𝑁 , i.e., 𝑀 and 𝑁 behave the same

except that𝑀 may error more.

In this paper, we will be using SGDT techniques to prove graduality for a particularly simple

gradually-typed cast calculus, the gradually-typed lambda calculus. This is just the usual simply-

typed lambda calculus with a dynamic type ? such that 𝐴 ⊑ ? for all types 𝐴, as well as upcasts and

downcasts between any types 𝐴 and 𝐵 such that 𝐴 ⊑ 𝐵. The complete definition will be provided

in Section 3.

Our main theorem is the following:

Theorem 1.1 (Graduality). If · ⊢ 𝑀 ⊑ 𝑁 : Nat, then

(1) If 𝑁 = ℧, then𝑀 = ℧
(2) If 𝑁 = ‘𝑛, then𝑀 = ℧ or𝑀 = ‘𝑛

(3) If𝑀 = 𝑉 , then 𝑁 = 𝑉

We also should be able to show that ℧, zro, and suc𝑁 are not equal.

Our first step toward proving graduality is to formulate an intensional gradual lambda calculus,

whichwe call Int-𝜆𝐶 , in which the computation steps taken by a term aremade explicit. The “normal”

graudal lambda calculus for which we want to prove graduality will be called the extensional gradual
lambda calculus, denoted Ext-𝜆𝐶 . We will define an erasure function ⌊·⌋ : Int-𝜆𝐶 → Ext-𝜆𝐶 which

takes a program in the intensional lambda calculus and “forgets” the syntactic information about

the steps to produce a term in the extensional calculus.

Every term𝑀𝑒 in Ext-𝜆𝐶 will have a corresponding program𝑀𝑖 in Int-𝜆𝐶 such that ⌊𝑀𝑖⌋ = 𝑀𝑒 .

Moreover, we will show that if𝑀𝑒 ⊑𝑒 𝑀
′
𝑒 in the extensional theory, then there exists terms𝑀𝑖 and

𝑀 ′
𝑖 such that ⌊𝑀𝑖⌋ = 𝑀𝑒 , ⌊𝑀 ′

𝑖 ⌋ = 𝑀 ′
𝑒 and𝑀𝑖 ⊑𝑖 𝑀

′
𝑖 in the intensional theory.

We formulate and prove an analogous graduality theorem for the intensional lambda calculus. We

define an interpretation of the intensional lambda calculus into a model in which we prove various

results. Using the observation above, given𝑀𝑒 ⊑ 𝑀 ′
𝑒 : Nat, we can find intensional programs𝑀𝑖

and𝑀 ′
𝑖 that erase to them and are such that𝑀𝑖 ⊑ 𝑀 ′

𝑖 . We will then apply the intensional graduality

theorem to𝑀𝑖 and𝑀
′
𝑖 , and translate the result back to𝑀𝑒 and𝑀

′
𝑒 .

3

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini and Max S. New

1.5 Overview of Remainder of Paper
In Section 2, we provide technical background on gradually typed languages and on synthetic

guarded domain theory. In Section 3, we introduce the gradually-typed cast calculus for which

we will prove graduality. Important here are the notions of syntactic type precision and term

precision. We introduce both the extensional gradual lambda calculus (Ext-𝜆𝐶) and the intensional

gradual lambda calculus (Int-𝜆𝐶). In Section 4, we define several fundamental constructions internal

to SGDT that will be needed when we give a denotational semantics to our intensional lambda

calculus. This includes the notion of Predomains as well as the concept of EP-Pairs. In Section 5,

we define the denotational semantics for the intensional gradually-typed lambda calculus using

the domain theoretic constructions in the previous section. In Section 6, we outline in more detail

the proof of graduality for the extensional gradual lambda calculus. In Section 7, we discuss the

benefits and drawbacks to our approach in comparison to the traditional step-indexing approach,

as well as possibilities for future work.

2 TECHNICAL BACKGROUND
2.1 Synthetic Guarded Domain Theory
One way to avoid the tedious reasoning associated with step-indexing is to work axiomatically

inside of a logical system that can reason about non-well-founded recursive constructions while

abstracting away the specific details of step-indexing required if we were working analytically. The

system that proves useful for this purpose is called synthetic guarded domain theory, or SGDT for

short. We provide a brief overview here, but more details can be found in [?].
SGDT offers a synthetic approach to domain theory that allows for guarded recursion to be

expressed syntactically via a type constructor ▷: Type → Type (pronounced “later”). The use of a

modality to express guarded recursion was introduced by Nakano [?].
Given a type 𝐴, the type ▷ 𝐴 represents an element of type 𝐴 that is available one time step later.

There is an operator next : 𝐴 →▷ 𝐴 that “delays” an element available now to make it available

later. We will use a tilde to denote a term of type ▷ 𝐴, e.g., 𝑀̃ .

There is a fixpoint operator

fix : ∀𝑇, (▷ 𝑇 → 𝑇) → 𝑇 .

That is, to construct a term of type 𝑇 , it suffices to assume that we have access to such a

term “later” and use that to help us build a term “now”. This operator satisfies the axiom that

fix𝑓 = 𝑓 (next(fix𝑓)). In particular, this axiom applies to propositions 𝑃 : Prop; proving a statement

in this manner is known as Löb-induction.

In SGDT, there is also a new sort called clocks. A clock serves as a reference relative to which the

constructions described above are carried out. For instance, given a clock 𝑘 and type 𝑇 , the type

▷𝑘 𝑇 represents a value of type 𝑇 one unit of time in the future according to clock 𝑘 . If we only

ever had one clock, then we would not need to bother defining this notion. However, the notion of

clock quantification is crucial for encoding coinductive types using guarded recursion, an idea first

introduced by Atkey and McBride [?].

2.1.1 Ticked Cubical Type Theory. In Ticked Cubical Type Theory [?], there is an additional sort

called ticks. Given a clock 𝑘 , a tick 𝑡 : tick𝑘 serves as evidence that one unit of time has passed

according to the clock 𝑘 . The type ▷ 𝐴 is represented as a function from ticks of a clock 𝑘 to 𝐴. The

type 𝐴 is allowed to depend on 𝑡 , in which case we write ▷𝑘𝑡 𝐴 to emphasize the dependence.

The rules for tick abstraction and application are similar to those of dependent Π types. In

particular, if we have a term𝑀 of type ▷𝑘 𝐴, and we have available in the context a tick 𝑡 ′ : tick𝑘 ,

4

Denotational Semantics for Gradual Typing in Synthetic Guarded Domain TheoryWoodstock ’18, June 03–05, 2018, Woodstock, NY

then we can apply the tick to𝑀 to get a term𝑀 [𝑡 ′] : 𝐴[𝑡 ′/𝑡]. We will also write tick application as

𝑀𝑡 . Conversely, if in a context Γ, 𝑡 : tick𝑘 we have that 𝑀 has type 𝐴, then in context Γ we have

𝜆𝑡 .𝑀 has type ▷ 𝐴.

The statements in this paper have been formalized in a variant of Agda called Guarded Cubical

Agda [?], an implementation of Clocked Cubical Type Theory.

2.2 The Topos of Trees Model
The topos of trees S is the presheaf category Set𝜔

𝑜

.

We assume a universe U of types, with encodings for operations such as sum types (written

as +̂). There is also an operator ▷̂ : ▷ U → U such that El(▷̂(next𝐴)) = ▷ El(𝐴), where El is the
type corresponding to the code 𝐴.

An object 𝑋 is a family {𝑋𝑖 } of sets indexed by natural numbers, along with restriction maps

𝑟𝑋𝑖 : 𝑋𝑖+1 → 𝑋𝑖 .

A morphism from {𝑋𝑖 } to {𝑌𝑖 } is a family of functions 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 that commute with the

restriction maps in the obvious way, that is, 𝑓𝑖 ◦ 𝑟𝑋𝑖 = 𝑟𝑌𝑖 ◦ 𝑓𝑖+1.
The type operator ▷ is defined on an object 𝑋 by (▷ 𝑋)0 = 1 and (▷ 𝑋)𝑖+1 = 𝑋𝑖 . The restric-

tion maps are given by 𝑟▷
0
= !, where ! is the unique map into 1, and 𝑟▷𝑖+1 = 𝑟𝑋𝑖 . The morphism

next𝑋 : 𝑋 →▷ 𝑋 is defined pointwise by next𝑋
0
= !, and next𝑋𝑖+1 = 𝑟𝑋𝑖 .

Given a morphism 𝑓 : ▷ 𝑋 → 𝑋 , we define fix𝑓 pointwise as fix𝑖 (𝑓) = 𝑓𝑖 ◦ · · · ◦ 𝑓0.

3 GTLC
Here we describe the syntax and typing for the graudally-typed lambda calculus. We also give the

rules for syntactic type and term precision.

We start with the extensional lambda calculus Ext-𝜆𝐶 , and then describe the additions necessary

for the intensional lambda calculus Int-𝜆𝐶 .

3.1 Syntax

Types 𝐴, 𝐵 := Nat, ?, (𝐴 ⇒ 𝐵)
Terms𝑀, 𝑁 := ℧𝐴, zro, suc𝑀, (𝜆𝑥.𝑀), (𝑀 𝑁), (⟨𝐵 ↢ 𝐴⟩𝑀), (⟨𝐴 ↞ 𝐵⟩𝑀)
Contexts Γ := ·, (Γ, 𝑥 : 𝐴)

The typing rules are as expected, with a cast between 𝐴 to 𝐵 allowed only when 𝐴 ⊑ 𝐵.

Γ ⊢ ℧𝐴 : 𝐴 Γ ⊢ zro : Nat
Γ ⊢ 𝑀 : Nat

Γ ⊢ suc𝑀 : Nat

Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Γ ⊢ 𝜆𝑥 .𝑀 : 𝐴 ⇒ 𝐵

Γ ⊢ 𝑀 : 𝐴 ⇒ 𝐵 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀 𝑁 : 𝐵

𝐴 ⊑ 𝐵 Γ ⊢ 𝑀 : 𝐴

Γ ⊢ ⟨𝐵 ↢ 𝐴⟩𝑀 : 𝐵

𝐴 ⊑ 𝐵 Γ ⊢ 𝑀 : 𝐵

Γ ⊢ ⟨𝐴 ↞ 𝐵⟩𝑀 : 𝐴

The equational theory is also as expected, with 𝛽 and 𝜂 laws for function type.

3.2 Type Precision
The rules for type precision are as follows:

5

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini and Max S. New

? ⊑?
?

Nat ⊑ Nat

Nat

Nat ⊑?
𝐼𝑛 𝑗Nat

𝐴𝑖 ⊑ 𝐵𝑖 𝐴𝑜 ⊑ 𝐵𝑜

(𝐴𝑖 ⇒ 𝐴𝑜) ⊑ (𝐵𝑖 ⇒ 𝐵𝑜)
⇒

(𝐴𝑖 → 𝐴𝑜) ⊑ (? ⇒?)
(𝐴𝑖 → 𝐴𝑜) ⊑ ?

𝐼𝑛 𝑗⇒

Note that as a consequence of this presentation of the type precision rules, we have that if𝐴 ⊑ 𝐵,

there is a unique precision derivation that witnesses this. As in previous work, we go a step farther

and make these derivations first-class objects, known as type precision derivations. Specifically, for
every 𝐴 ⊑ 𝐵, we have a derivation 𝑑 : 𝐴 ⊑ 𝐵 that is constructed using the rules above. For instance,

there is a derivation ? :? ⊑?, and a derivation Nat : Nat ⊑ Nat, and if 𝑑𝑖 : 𝐴𝑖 ⊑ 𝐵𝑖 and 𝑑𝑜 : 𝐴𝑜 ⊑ 𝐵𝑜 ,

then there is a derivation 𝑑𝑖 ⇒ 𝑑𝑜 : (𝐴𝑖 ⇒ 𝐴𝑜) ⊑ (𝐵𝑖 ⇒ 𝐵𝑜). Likewise for the remaining two rules.

The benefit to making these derivations explicit in the syntax is that we can perform induction

over them. Note also that for any type 𝐴, we use 𝐴 to denote the reflexivity derivation that 𝐴 ⊑ 𝐴,

i.e., 𝐴 : 𝐴 ⊑ 𝐴. Finally, observe that for type precision derivations 𝑑 : 𝐴 ⊑ 𝐵 and 𝑑 ′
: 𝐵 ⊑ 𝐶 , we can

define their composition 𝑑 ′ ◦ 𝑑 : 𝐴 ⊑ 𝐶 . This will be used in the statement of transitivity of the

term precision relation.

3.3 Term Precision
We allow for a heterogeneous term precision judgment on terms 𝑀 of type 𝐴 and 𝑁 of type 𝐵,

provided that 𝐴 ⊑ 𝐵 holds.

In order to deal with open terms, we will need the notion of a type precision context, which
we denote Γ⊑

. This is similar to a normal context but instead of mapping variables to types, it

maps variables 𝑥 to related types 𝐴 ⊑ 𝐵, where 𝑥 has type 𝐴 in the left-hand term and 𝐵 in the

right-hand term. We may also write 𝑥 : 𝑑 where 𝑑 : 𝐴 ⊑ 𝐵 to indicate this. Another way of thinking

of type precision contexts is as a zipped pair of contexts Γ𝑙 , Γ𝑟 with the same domain such that

Γ𝑙 (𝑥) ⊑ Γ𝑟 (𝑥) for each 𝑥 in the domain.

The rules for term precision come in two forms. We first have the congruence rules, one for each
term constructor. These assert that the term constructors respect term precision. The congruence

rules are as follows:

Γ ⊢ 𝑀 : 𝐴

Γ⊑ ⊢ ℧𝐴 ⊑𝑒 𝑀 : 𝐴
℧

𝑑 : 𝐴 ⊑ 𝐵 Γ⊑ (𝑥) = (𝐴, 𝐵)
Γ⊑ ⊢ 𝑥 ⊑𝑒 𝑥 : 𝑑

Var

Γ⊑ ⊢ zro ⊑𝑒 zro : Nat
Zro

Γ⊑ ⊢ 𝑀 ⊑𝑒 𝑁 : Nat

Γ⊑ ⊢ suc𝑀 ⊑𝑒 suc𝑁 : Nat

Suc

𝑑𝑖 : 𝐴𝑖 ⊑ 𝐵𝑖 𝑑𝑜 : 𝐴𝑜 ⊑ 𝐵𝑜 Γ⊑, 𝑥 : 𝑑𝑖 ⊢ 𝑀 ⊑𝑒 𝑁 : 𝑑𝑜

Γ⊑ ⊢ 𝜆𝑥 .𝑀 ⊑𝑒 𝜆𝑥.𝑁 : (𝑑𝑖 ⇒ 𝑑𝑜)
Lambda

𝑑𝑖 : 𝐴𝑖 ⊑ 𝐵𝑖 𝑑𝑜 : 𝐴𝑜 ⊑ 𝐵𝑜
Γ⊑ ⊢ 𝑀 ⊑𝑒 𝑀

′
: (𝑑𝑖 ⇒ 𝑑𝑜) Γ⊑ ⊢ 𝑁 ⊑𝑒 𝑁

′
: 𝑑𝑖

Γ⊑ ⊢ 𝑀 𝑁 ⊑𝑒 𝑀
′𝑁 ′

: 𝑑𝑜
App

We then have additional equational axioms, including transitivity, 𝛽 and 𝜂 laws, and rules

characterizing upcasts as least upper bounds, and downcasts as greatest lower bounds.

6

Denotational Semantics for Gradual Typing in Synthetic Guarded Domain TheoryWoodstock ’18, June 03–05, 2018, Woodstock, NY

We write𝑀 ⊒⊑ 𝑁 to mean that both𝑀 ⊑ 𝑁 and 𝑁 ⊑ 𝑀 .

Γ⊑ ⊢ 𝑀 ⊑𝑒 𝑁 : 𝑑 Γ⊑ ⊢ 𝑁 ⊑𝑒 𝑃 : 𝑑
′

Γ⊑ ⊢ 𝑀 ⊑𝑒 𝑃 : 𝑑
′ ◦ 𝑑

Transitivity

Γ, 𝑥 : 𝐴𝑖 ⊢ 𝑀 : 𝐴𝑜 Γ ⊢ 𝑉 : 𝐴𝑖

Γ⊑ ⊢ (𝜆𝑥.𝑀)𝑉 ⊒⊑𝑒 𝑀 [𝑉 /𝑥] : 𝐴𝑜

𝛽

Γ ⊢ 𝑉 : 𝐴𝑖 ⇒ 𝐴𝑜

Γ⊑ ⊢ 𝜆𝑥 .(𝑉 𝑥) ⊒⊑𝑒 𝑉 : 𝐴𝑖 ⇒ 𝐴𝑜

𝜂
𝑑 : 𝐴 ⊑ 𝐵 Γ ⊢ 𝑀 : 𝐴

Γ⊑ ⊢ 𝑀 ⊑𝑒 ⟨𝐵 ↢ 𝐴⟩𝑀 : 𝑑
UpR

𝑑 : 𝐴 ⊑ 𝐵 Γ⊑ ⊢ 𝑀 ⊑𝑒 𝑁 : 𝑑

Γ⊑ ⊢ ⟨𝐵 ↢ 𝐴⟩𝑀 ⊑𝑒 𝑁 : 𝐵
UpL

𝑑 : 𝐴 ⊑ 𝐵 Γ ⊢ 𝑀 : 𝐵

Γ⊑ ⊢ ⟨𝐴 ↞ 𝐵⟩𝑀 ⊑𝑒 𝑀 : 𝑑
DnL

𝑑 : 𝐴 ⊑ 𝐵 Γ⊑ ⊢ 𝑀 ⊑𝑒 𝑁 : 𝑑

Γ⊑ ⊢ 𝑀 ⊑𝑒 ⟨𝐴 ↞ 𝐵⟩𝑁 : 𝐴
DnR

The rules UpR, UpL, DnL, and DnR were introduced in [?] as a means of cleanly axiomatizing the

intended behavior of casts in a way that doesn’t depend on the specific constructs of the language.

Intuitively, rule UpR says that the upcast of𝑀 is an upper bound for 𝑀 in that𝑀 may error more,

and UpL says that the upcast is the least such upper bound, in that it errors more than any other

upper bound for𝑀 . Conversely, DnL says that the downcast of𝑀 is a lower bound, and DnR says

that it is the greatest lower bound.

3.4 The Intensional Lambda Calculus
Now that we have described the syntax along with the type and term precision judgments for

Ext-𝜆𝐶 , we can now do the same for Int-𝜆𝐶 . One key difference between the two calculi is that we

define Int-𝜆𝐶 using the constructs available to us in the language of synthetic guarded domain

theory, e.g., we use the ▷ operator. Whereas when we defined the syntax of the extensional lambda

calculus we were working in the category of sets, when we define the syntax of the intensional

lambda calculus we will be working in the topos of trees.

More specifically, in Int-𝜆𝐶 , we not only have normal terms, but also terms available “later”,

which we denote by 𝑀̃ . We have a term constructor 𝜃𝑠 which takes a later-term and turns it into a

term avaialble now. The typing and precision rules for 𝜃𝑠 involve the ▷ operator, as shown below.

Observe that 𝜃𝑠 is a syntactic analogue to the 𝜃 constructor of the lifting monad that we will define

in the section on domain theoretic constructions (Section 4), but it is important to note that 𝜃𝑠 (𝑀̃)
is an actual term in Int-𝜆𝐶 , whereas the 𝜃 constructor is a purely semantic construction. These will

be connected when we discuss the interpretation of Int-𝜆𝐶 into the semantic model.

To better understand this situation, note that 𝜆𝑥 .(·) can be viewed as a function (at the level of

the ambient type theory) from terms of type 𝐵 under context Γ, 𝑥 : 𝐴 to terms of type 𝐴 ⇒ 𝐵 under

context Γ. Similarly, we can view 𝜃𝑠 (·) as a function (in the ambient type theory, which is sythetic

guarded domain theory) taking terms 𝑀̃ of type 𝐴 avaiable later to terms of type 𝐴 available now.
Notice that the notion of a “term available later” does not need to be part of the syntax of the

intensional lambda calculus, because this can be expressed in the ambient theory. Similarly, we do

not need a syntactic form to delay a term, because we can simply use next.

Terms𝑀, 𝑁 := ℧𝐴, . . . 𝜃𝑠 (𝑀̃)

7

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini and Max S. New

▷𝑡 (Γ ⊢ 𝑀𝑡 : 𝐴)
Γ ⊢ 𝜃𝑠𝑀 : 𝐴

▷𝑡 (Γ⊑ ⊢ 𝑀𝑡 ⊑𝑖 𝑁𝑡 : 𝑑)
Γ⊑ ⊢ 𝜃𝑠𝑀 ⊑𝑖 𝜃𝑠𝑁 : 𝑑

Recall that ▷𝑡 is a dependent form of ▷ where the arugment is allowed to mention 𝑡 . In particular,

here we apply the tick 𝑡 to the later-terms𝑀 and 𝑁 to get “now"-terms𝑀𝑡 and 𝑁𝑡 .

Formally speaking, the term precision relation must be defined as a guarded fixpoint, i.e., we

assume that the function is defined later, and use it to construct a definition that is defined “now”.

This involves applying a tick to the later-function to shift it to a now-function. Indeed, this is what

we do in the formal Agda development, but in this paper, we will elide these issues as they are not

relevant to the main ideas.

4 DOMAIN-THEORETIC CONSTRUCTIONS
In this section, we discuss the fundamental objects of the model into which we will embed the

intensional lambda calculus and inequational theory. It is important to remember that the construc-

tions in this section are entirely independent of the syntax described in the previous section; the

notions defined here exist in their own right as purely mathematical constructs. In the next section,

we will link the syntax and semantics via an interpretation function.

4.1 The Lift Monad
When thinking about how to model intensional gradually-typed programs, we must consider their

possible behaviors. On the one hand, we have failure: a program may fail at run-time because of a

type error. In addition to this, a program may “think”, i.e., take a step of computation. If a program

thinks forever, then it never returns a value, so we can think of the idea of thinking as a way of

intensionally modelling partiality.
With this in mind, we can describe a semantic object that models these behaviors: a monad for

embedding computations that has cases for failure and “thinking”. Previous work has studied such

a construct in the setting of the latter only, called the lift monad [?]; here, we add the additional

effect of failure.

For a type 𝐴, we define the lift monad with failure 𝐿℧𝐴, which we will just call the lift monad, as
the following datatype:

𝐿℧𝐴 :=

𝜂 : 𝐴 → 𝐿℧𝐴

℧ : 𝐿℧𝐴

𝜃 : ▷ (𝐿℧𝐴) → 𝐿℧𝐴

Formally, the lift monad 𝐿℧𝐴 is defined as the solution to the guarded recursive type equation

𝐿℧𝐴 � 𝐴 + 1+ ▷ 𝐿℧𝐴.

An element of 𝐿℧𝐴 should be viewed as a computation that can either (1) return a value (via 𝜂),

(2) raise an error and stop (via ℧), or (3) think for a step (via 𝜃).

8

Denotational Semantics for Gradual Typing in Synthetic Guarded Domain TheoryWoodstock ’18, June 03–05, 2018, Woodstock, NY

Notice there is a computation fix𝜃 of type 𝐿℧𝐴. This represents a computation that thinks forever

and never returns a value.

Since we claimed that 𝐿℧𝐴 is a monad, we need to define the monadic operations and show

that they repect the monadic laws. The return is just 𝜂, and extend is defined via by guarded

recursion by cases on the input. Verifying that the monadic laws hold requires Löb-induction and

is straightforward.

The lift monad has the following universal property. Let 𝑓 be a function from 𝐴 to 𝐵, where 𝐵 is

a ▷-algebra, i.e., there is 𝜃𝐵 : ▷ 𝐵 → 𝐵. Further suppose that 𝐵 is also an “error-algebra”, that is, an

algebra of the constant functor 1 : Type → Type mapping all types to Unit. This latter statement

amounts to saying that there is a map Unit → 𝐵, so 𝐵 has a distinguished “error element" ℧𝐵 : 𝐵.

Then there is a unique homomorphism of algebras 𝑓 ′ : 𝐿℧𝐴 → 𝐵 such that 𝑓 ′ ◦ 𝜂 = 𝑓 . The

function 𝑓 ′(𝑙) is defined via guarded fixpoint by cases on 𝑙 . In the ℧ case, we simply return ℧𝐵 . In

the 𝜃 (˜𝑙) case, we will return

𝜃𝐵 (𝜆𝑡 .(𝑓 ′𝑡 ˜𝑙𝑡)) .

Recalling that 𝑓 ′ is a guaded fixpoint, it is available “later” and by applying the tick we get a

function we can apply “now”; for the argument, we apply the tick to
˜𝑙 to get a term of type 𝐿℧𝐴.

4.1.1 Model-Theoretic Description. We can describe the lift monad in the topos of trees model as

follows.

4.2 Predomains
The next important construction is that of a predomain. A predomain is intended to model the notion

of error ordering that we want terms to have. Thus, we define a predomain 𝐴 as a partially-ordered

set, which consists of a type which we denote ⟨𝐴⟩ and a reflexive, transitive, and antisymmetric

relation ≤𝑃 on 𝐴.

For each type we want to represent, we define a predomain for the corresponding semantic type.

For instance, we define a predomain for natural numbers, a predomain for the dynamic type, a

predomain for functions, and a predomain for the lift monad. We describe each of these below.

We define monotone functions between predomain as expected. Given predomains 𝐴 and 𝐵, we

write 𝑓 : 𝐴 →𝑚 𝐵 to indicate that 𝑓 is a monotone function from 𝐴 to 𝐵, i.e, for all 𝑎1 ≤𝐴 𝑎2, we

have 𝑓 (𝑎1) ≤𝐵 𝑓 (𝑎2).

• There is a predomain Nat for natural numbers, where the ordering is equality.

• There is a predomain Dyn to represent the dynamic type. The underlying type for this

predomain is defined to be N+ ▷ (𝐷𝑦𝑛 →𝑚 𝐷𝑦𝑛). This definition is valid because the

occurrences of Dyn are guarded by the ▷. The ordering is defined via guarded recursion by

cases on the argument, using the ordering on N and the ordering on monotone functions

described below.

• For a predomain 𝐴, there is a predomain 𝐿℧𝐴 that is the “lift” of 𝐴 using the lift monad. We

use the same notation for 𝐿℧𝐴 when 𝐴 is a type and 𝐴 is a predomain, since the context

should make clear which one we are referring to. The underling type of 𝐿℧𝐴 is simply 𝐿℧⟨𝐴⟩,
i.e., the lift of the underlying type of 𝐴. The ordering of 𝐿℧𝐴 is the “lock-step error-ordering”

which we describe in 4.3.

• For predomains 𝐴𝑖 and 𝐴𝑜 , we form the predomain of monotone functions from 𝐴𝑖 to 𝐴𝑜 ,

which we denote by 𝐴𝑖 ⇒ 𝐴𝑜 . Two such functions are related

9

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini and Max S. New

Predomains will form the objects of a structure similar to a double category, with horizontal

morphisms being monotone funcitons, and vertical morphisms being embedding-projection pairs

discussed below.

4.3 Lock-step Error Ordering
Asmentioned, the ordering on the lift of a predomain𝐴 The relation is parameterized by an ordering

≤𝐴 on 𝐴. We call this the lock-step error-ordering, the idea being that two computations 𝑙 and 𝑙 ′

are related if they are in lock-step with regard to their intensional behavior. That is, if 𝑙 is 𝜂𝑥 , then

𝑙 ′ should be equal to 𝜂𝑦 for some 𝑦 such that 𝑥 ≤𝐴 𝑦.

4.4 Weak Bisimilarity Relation
4.5 Combined Ordering
4.6 EP-Pairs
The use of embedding-projection pairs in gradual typing was introduced by New and Ahmed [?
]. Here, we want to adapt this notion of embedding-projection pair to the setting of intensional

denotaional semantics.

5 SEMANTICS
5.1 Types as Predomains
5.2 Terms as Monotone Functions
5.3 Type Precision as EP-Pairs
5.4 Term Precision via the Lock-Step Error Ordering
6 GRADUALITY
6.1 Outline
6.2 Extensional to Intensional
6.3 Intensional Results
6.4 Adequacy
6.5 Putting it Together
7 DISCUSSION
7.1 Synthetic Ordering
While the use of synthetic guarded domain theory allows us to very conveniently work with non-

well-founded recursive constructions while abstracting away the precise details of step-indexing,

we do work with the error ordering in a mostly analytic fashion in that gradual types are interpreted

as sets equipped with an ordering relation, and all terms must be proven to be monotone. It is

possible that a combination of synthetic guarded domain theory with directed type theory would

allow for an a synthetic treatment of the error ordering as well.

REFERENCES
[1] Matteo Cimini and Jeremy G. Siek. 2016. The Gradualizer: A Methodology and Algorithm for Generating Gradual

Type Systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY, USA, 443–455.

https://doi.org/10.1145/2837614.2837632

[2] Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL ’16).
Association for Computing Machinery, New York, NY, USA, 429–442. https://doi.org/10.1145/2837614.2837670

10

https://doi.org/10.1145/2837614.2837632
https://doi.org/10.1145/2837614.2837670

Denotational Semantics for Gradual Typing in Synthetic Guarded Domain TheoryWoodstock ’18, June 03–05, 2018, Woodstock, NY

[3] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined Criteria for Gradual Typing.

In 1st Summit on Advances in Programming Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 32), Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett (Eds.).

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 274–293. https://doi.org/10.4230/LIPIcs.

SNAPL.2015.274

11

https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274

	Abstract
	1 Introduction
	1.1 Gradual Typing and Graduality
	1.2 Current Approaches
	1.3 Contributions
	1.4 Proving Graduality in SGDT
	1.5 Overview of Remainder of Paper

	2 Technical Background
	2.1 Synthetic Guarded Domain Theory
	2.2 The Topos of Trees Model

	3 GTLC
	3.1 Syntax
	3.2 Type Precision
	3.3 Term Precision
	3.4 The Intensional Lambda Calculus

	4 Domain-Theoretic Constructions
	4.1 The Lift Monad
	4.2 Predomains
	4.3 Lock-step Error Ordering
	4.4 Weak Bisimilarity Relation
	4.5 Combined Ordering
	4.6 EP-Pairs

	5 Semantics
	5.1 Types as Predomains
	5.2 Terms as Monotone Functions
	5.3 Type Precision as EP-Pairs
	5.4 Term Precision via the Lock-Step Error Ordering

	6 Graduality
	6.1 Outline
	6.2 Extensional to Intensional
	6.3 Intensional Results
	6.4 Adequacy
	6.5 Putting it Together

	7 Discussion
	7.1 Synthetic Ordering

	References

