
The Lift Monad in the Topos of Trees

Eric Giovannini

February 13, 2023

1 Background

Recall that the topos of trees S is the presheaf category Setω
o

. An object X is
a family {Xi} of sets indexed by natural numbers, along with restriction maps
rXi : Xi+1 → Xi.

A morphism from {Xi} to {Yi} is a family of functions fi : Xi → Yi that com-
mute with the restriction maps in the obvious way, that is, fi ◦ rXi = rYi ◦ fi+1.

There is an operator B (“later”), defined on an object X by (BX)0 = 1 and
(BX)i+1 = Xi. The restriction maps are given by rB0 =!, where ! is the unique
map into 1, and rBi+1 = rXi .

For eachX, there is a morphism nextX : X →BX defined pointwise by nextX0 =
!, and nextXi+1 = rXi .

We also have a universe U of types, with encodings for operations such as
sum types (written as +̂). There is also an operator B̂: B U → U such that
El(B̂(nextA)) = BEl(A), where El is the type corresponding to the code A.

2 Guarded Fixpoints

Given a morphism f : BX → X, we want to compute its fixed point gfixf : X.
We define gfix : (BX ⇒ X) → X as a morphism in S, where (BX ⇒ X) is
the exponential object, the object of functions from BX to X.

We first describe (BX ⇒ X). Since S is a presheaf category, we can use the
Yoneda Lemma to describe the exponential objects, as reviewed below.

In general, let X and Y be object in the functor category SetC
o

, i.e., functors
X and Y from Co to Set. We have by the Yoneda Lemma that for each object
a of C, the set (X ⇒ Y )(a) is isomorphic to the set of natural transformations
Yo(a)→ (X ⇒ Y ), i.e., the set of morphisms Yo(a)→ (X ⇒ Y ) in the functor
category. But by the universal property of the exponential, such a morphism is
the same as a morphism (in this case, a natural transformation) Yo(a)×X → Y .

1



So, the set (X ⇒ Y )(a) is isomorphic to the set of natural transformations
Yo(a)×X → Y , that is, (Hom(−, a)×X)→ Y .

With the above, we can compute the definition of (BX ⇒ X) in S. Since C = ω
is a preorder, the above result specializes to

(BX ⇒ X)i = {f i : ∀j ≤ i.(BX)j → Xj}.

(The superscript is included to remind us of which set each function belongs
to.)

The naturality condition says that, for j′ ≤ j the following diagram commutes:

(BX)j Xj

(BX)j′ Xj′

rBX
j≤j′ rX

j≤j′

fi j′

fi j

Additionally, the restriction maps r
(BX⇒X)
i : (BX ⇒ X)i+1 → (BX ⇒ X)i are

defined in the obvious way. Namely, if f : ∀j ≤ i + 1.(BX)j → Xj then in
particular f : ∀j ≤ i.(BX)j → Xj , so we define

r
(BX⇒X)
i (f) := f.

Note that this is just a special case of the action of the functor X ⇒ Y discussed
above on morphisms.

Now we can proceed to define gfix. We define gfixi : (BX ⇒ X)i → Xi by
induction on i. We let

gfix0(f) = f 0 1,

since here f 0: (BX)0 → X0 and we have (BX)0 = 1. For i ≥ 1, we define

gfixi(f) = f i (gfixi−1(f (i− 1))),

which has typeXi as follows: since f (i−1) : ((BX)i−1 → Xi−1), then gfixi−1(f (i−
1)) has type Xi−1, which is equal to (BX)i, and so it is a valid input to f i.

This completes the definition of gfixi, and hence of gfix. We need to verify
that gfixf = f(next(gfixf)), where f : BX ⇒ X. This follows from the
definition of gfix above.

2



3 The Lift Monad

For an object X, the lift monad LfX is defined as follows:

LfX :=

η : X → LfX

f : LfX

θ : B(LfX)→ LfX

In the setting of guarded domain theory, the above translates to the following
guarded fixpoint:

L̂fX = gfix(λY : BU .X +̂ 1 +̂ B̂Y )

With this definition, we can take LfX = El(L̂fX), and we can show that
LfX = X+1+ B(LfX). This follows from the fact that gfixf = f(next(gfixf))
and the rule El(B̂(nextA)) = BEl(A).

We can compute (LfX)i for each i, as follows. Intuitively, we can think of
having a potentially-erroring computation that returns values of type X, and
(LfX)i represents our view of the behavior of the computation provided we can
watch it for i+ 1 steps.

We have

(LfX)0 = X0 + 1 + (BLfX)0 = X0 + 1 + 1.

This represents the behavior of the computation after one step. The first 1
represents the case where an error occurred, while the second 1 represents the
case where the computation took more than one step, and hence we have run
out of time to observe it.

For i ≥ 1, we have

(LfX)i = Xi + 1 + (BLfX)i

= Xi + 1 + (LfX)i−1.

In other words, when observing a computation for i+ 1 steps, either (1) we get
a value in the first step, or (2) we error in the first step, or (3) the answer is not
ready yet and we must wait, in which case we will have i steps left to watch the
computation.

For concreteness, when i = 1, we have

3



(LfX)1 = X1 + 1 + (X0 + 1 + 1).

Here, the first 1 represents an error occurring in the first step of the computation,
while the second 1 represents an error in the second step, and the third 1
represents having run out of steps to observe the computation.

We now discuss each of the constructors of LfX. First consider the constructor
ηX : X ⇒ LfX. This is defined component-wise as ηXi = λx.inl(inlx) (we
assume sums are left-associative). The constructor fX : 1 ⇒ LfX is defined
by fX

i = λ().inl(inr ()). Lastly, the constructor θX : (B (LfX) ⇒ LfX) is
defined by θXi = λl̃.inr l̃.

The restriction maps rLfX
i : (LfX)i+1 → (LfX)i are defined by “truncating”

the observation of the computation from i + 2 steps to i + 1 steps, as follows.
If the computation has the form ηXi+1(x), then we return ηXi (rXi (x)). If the
computation has the form fX

i+1, then we return fX
i . Lastly, if the computation

has the form θXi+1(l̃), then we return θX0 () if i = 0 and (θXi (rLfX
i−1 (l̃))) if i ≥ 1.

3.1 The Diverging Computation

Consider the “non-terminating” computation gfix(θ) : LfX. This can be de-
scribed pointwise as follows:

(gfix(θ))0 = inr () : (LfX)0,

and for i ≥ 1,

(gfix(θ))i = inr((gfix(θ))i−1),

where the latter type-checks because (gfix(θ))i−1 : (LfX)i−1.

Unfolding the above, we have

(gfix(θ))i = inr(inr(. . . (inr ()) . . . )),

where there are i+ 1 nested occurrences of inr.

So, no matter how many steps we observe this computation for, it will never
return a result within that number of steps. It will instead always say that it
needs more time.

4



4 Weak Bisimilarity

We now define a weak bisimilarity relation “≈” on LfX. This relation is pa-
rameterized by an equivalence relation ∼ on X. Intuitively, two computations l
and l′ if they are equivalent “up to θ”. Specifically, their underlying results are
related by ∼ and they only differ in the number of steps taken to deliver their
results.

In the below, we define δ : LfX → LfX to be θ ◦ next.

We define ≈ via guarded fixpoint as follows:

≈ = gfix(λ rec l l′.

case l, l′ of

| f,f⇒ Unit

| η(x), η(y)⇒ x ∼ y
| θ(x̃), θ(ỹ)⇒ B̂(λt.(rec t)(x̃ t)(ỹ t))

| θ(x̃),f⇒ Σn:N.θ(x̃) = δn(f)

| θ(x̃), η(y)⇒ Σn:N.Σx:X .θ(x̃) = δn(η(x))× (x ∼ y)

| f, θ(ỹ)⇒ Σn:N.θ(ỹ) = δn(f)

| η(x), θ(ỹ)⇒ Σn:N.Σy:X .θ(ỹ) = δn(η(y))× (x ∼ y)

| otherwise⇒ ⊥)

Note that in the case where both variables are θ’s, we have used tick abstraction
so that we can apply the guarded recursive function rec.

We now consider the claim that for all l : LfX,

l ≈ (gfix(θ)).

We claim that this does not hold. Specifically, we claim that

f 6≈ (gfix(θ)).

In order for these to be related, according to the defintion of the relation, (and
recalling that (gfix(θ)) = θ(next(gfix(θ)))), we would need that (gfix(θ)) =
δn(f) for some n.

Suppose this were the case for some natural number n0. Consider an index
i > n0 ∈ ω. The left-hand side above is equal to

inr(inr(. . . (inr ()) . . . )),

5



(where there are i + 1 occurrences of inr), while the right-hand side will have
as its innermost term an inl(inr ()), representing the error case f. Thus, the
two terms cannot be equal for any n. It follows that

f 6≈ (gfix(θ)).

6


