Technical Outline

Eric Giovannini

April 14, 2023

1 The Overall Plan

The goal is to show graduality of the extensional gradual lambda calculus. The
main theorem is the following:

Theorem 1.1 (Graduality). If M C M’, then
o MU iff M.
o M v iff M | v, where v =U or vy = v.

2 Syntax

We begin with a gradually-typed lambda calculus (Ext-\), which is similar to
the normal call-by-value gradually-typed lambda calculus, but differs in that it
is actually a fragment of call-by-push-value specialized such that there are no
non-trivial computation types. We do this for convenience, as either way we
would need a distinction between values and effectful terms; the framework of
of call-by-push-value gives us a convenient langugae to define what we need.

We then observe that composition of type precision derivations is admissible, as
is heterogeneous transitivity for term precision (via casts), so it will suffice to
consider a new language (Ext-A7%?"%) in which we don’t have composition of
type precision derivations or transitivity of term precision.

We further observe that all casts, except those between Nat and 7 and between
? —7 and ?, are admissible (we can define the cast of a function type functorially
using the casts for its domain and codomain).

This means it is sufficient to consider a new language (Ext-A~trn8=cast) in which
instead of having arbitrary casts, we have injections from Nat and 7 —7 into 7,
and case inspections from 7 to Nat and ? to 7 —7.

From here, we define an intensional GSTLC, so-named because it makes the
intensional stepping behavior of programs explicit in the syntax. This is acocm-
plished by adding a syntactic “later” type and a syntactic 6 that maps terms of
type later A to terms of type A.

2.1 Extensional (Ext-)—trans—cast)

Value Types A:=Nat |? | (A — B)
Computation Types B := RetA
Value Contexts I' := - | (T, : A)
Computation Contexts A:=- | e: B | A,z : A
Values V :=zro | sucV | Inj,.(V) | Inj_, (V)
Terms M,N :=0pg | RetV |vara =M in N | \e. M | V; V, |
Casepat (V){no — M,, | nat(n) — Myes} | Case(V){no — M,, | fun(f) = Myes}

The value typing judgment is written I' = V: A and the computation typing
judgment is written A+ M: B.
We define substitution for computation contexts as follows:

§: A= A AlyFV: A A'-M:B
(06, V/z): A" = Az : A e M:AN —e:B

The typing rules are as follows:

' M: Nat T,x: A M: RetA’
“T'HFUOp: B I' - zro: Nat I' Fsuc M : Nat PFXe.M: A— A
PV A=A I'+V,: A '+Vv: A
TF MN: RetA’ T F retV: RetA
A+ M: RetA “Aly,z: AFN: B 'k M: Nat
AbFvarz=Min N: B TEInjo(M):?
L M: (?—=7) rev:? A,z :Nat - Myes: B A+ M,,: B
TElInj (M):? A+ Casepat(M){no — M,, | nat(n) — Mycs}: B

r=v:? Az (?=?)F Myes: B A+M,,: B
A+ Case_, (M){no — My, | fun(f) = Mycs}: B

The equational theory is as follows:

T,z :AF M: RetA’ rv:A 'Ev:A— A
Az.M)V = M[V/x] rcv=>xxVx
I'+V: Nat

Casenat (INjat (V)){no — My, | nat(n) = Myes} = Myes[V/n]

TEV:?7 7
Casenat (Inj_, (V)){no — My, | nat(n) = Myes} = My,

T,z :?7F M = Casepat(2){no — M | nat(n) = M|(Inj,..(n))/z]}

eo: RetA,'"FM: B
var ¢ =retV in N = N[V/z] o: RetA,T'+ M = var x = o in M|retz]

Equivalent terms in the equational theory are considered equal.

We now discuss type and term precision. In our language, we do not have “term
precision” but rather arbitrary monotone relations on types, which we denote
by A o-e B. We have relations on value types, as well as on computation types.
In addition, because we don’t have casts in our language, we do not have the
usual cast rules specifying that casts are least upper bounds and greatest lower
bounds. Instead, we have rules for our injection and case terms.

Value Relations R:=Nat |? | (R—R) | a1 <4 as
Computation Relations S := LiftR

2.2 Intensional

In the intensional syntax, we add a type constructor for later, as well as a
syntactic # term and a syntactic next term. We add rules for each of these,
and also modify the rules for inj-arr and case-arr, since now the function is not
Dyn — Dyn but rather > (Dyn — Dyn).

We define an erasure function from intensional syntax to extensional syntax
by induction on the intensional types and terms. The basic idea is that the
syntactic type > A erases to A, and next and 6 erase to the identity.

3 Semantics

To give a semantics of the extensional, quotiented syntax (Ext-\~trans—cast)

proceed in a few steps:

we

1. We first give a denotational semantics of the intensional syntax Int-\ using
synthetic guarded domain theory, i.e., working internal to the topos of
trees. The denotation of a value type A will be a poset [A], and the
denotation of a computation type RetA will be the lift Li[A], (i.e., the
free error domain on [A]). We refer to this semantics as the step-indexed
semantics.

2. We then show how to go from the above step-indexed semantics to a
set-based semantics which is still intensional in that the denotations of
terms that differ only in their number of “steps” will not be equal. The
denotations here are a type of coinductive “Machine” that at each step of
computation can either return a result, error, or continue running. We call
this the Machine semantics. The passage from step-indexed semantics to
the coinductive semantics will make use of clock quantification; see below
for details.

3. Finally, we collapse the above intensional Machine-based semantics to
an extensional semantics, so-called because at this point the information
about the precise number of steps a Machine has taken has been lost. We
care only whether the Machine runs to a value or error, or whether it
diverges. Of course, we cannot in general decide whether a given Machine
will halt, so the semantic objects here are pairs of a proposition P and a
function taking a proof of P to an element of the poset.

The benefit to working synthetically in step 1 above is that the construction
of the logical relation that proves canonicity for the intensional syntax can be
carried out much like any normal, non-step-indexed logical relation.

4 Unary Canonicity

We first want to show soundness:

Lemma 4.1 (Soundness). In the Machine semantics, none of the following are
equal: U, zro,sucM,w, where w represents a diverging program.

Next we use a logical relations argument to establish the following;:
Lemma 4.2. M; "™ ve iff M; = 0™ (quote(vs))
We will need the following key property relating erasure to the semantics:

Lemma 4.3. If |[M;] = M and |M]| = M', and M = M’, then |[M;]| =
M-

The idea of the proof is that since M; and M/ have equal erasures (in the
extensional equational theory), we can recover from the proof that their erasures
are equal a series of equational rules (e.g., 8 equality), and apply the intensional
analogues of those rules to M; to ensure that M; and M/ differ syntactically
only in their number of 0’s.

5 Graduality

