Contributions of this paper for JFP Audience:

The axiomatic semantics of gradual type theory allows for a type theory
focused on preserving type-based reasoning to be used as a framework
for discussing *how™* casts should behave if we care about such reasoning
principles. The primary contribution is showing that the cast semantics
forces certain design principles for casts with certain type constructors.
For example, the "lazy" wrapping semantics for function type casts is
forced if we care about the eta rule for function types.

The specification

for other casts however can be left open to different models where for example
in Scheme-like GTT a cast between a pair of a boolean and an element of
some type A, can be successfully cast to a sum type, A+A. In a certain

sense this reminds me of how in languages like Reticulated Python, we may
allow casts between different iterable types because of common functionality
over the types (i.e. you can index into them).

One of the primary contributions is showing that gradual type theory

by construction honors graduality, while honoring eta-rule based optimizations.
This is in contrast to previous work on constructing gradual semantics

for statically typed languages (like AGT and Cimini's work on automating the
construction of the gradual type system and dynamic semantics), which

break certain eta-rules, even if graduality is enforced by construction.

Strengths of the revision:

In general, I found the increased amount of exposition to be helpful
across many sections. I think that the revision of the introduction

to include different examples, (in particular eager vs. lazy product casts)
to be enlightening.

I found Section 2 readable to begin with, but I appreciate the

greater detail on how CBV and CBN are embedded in CBPV. There
are some slight typos with the list of constructors in CBN. Similarly,
I found the increased discussion of eta-equivalences for different
type constructors aided in building intuition, although I think that

the initial paragraph added on Beta rules may have been unnecessary.

In Section 3 I found that the increased exposition helped with certain parts,
especially up until Section 3.5. The proofs for Lemma 3.5 and Lemma 3.6
are cleaner in appearance, although in some places there are some
omissions of x'. The connection to the discussion of type

constructors flows better after Theorem 3.6.

I'm not sure if it's just due to having read the paper once already,

but I found the Section 3.6 about how the existence of a most-precise

type to be easier to digest than in my initial review (though there

were some sloppy mistakes such as broken references).



The updated related work adds discussion of optimization, which is
related to the use of eta-rules for enabling program transformations.

Comments and concerns:

In the discussion of optimization,

I would have liked more discussion about how cast semantics that may
be models of GTT (like threesomes) could allow for systems with
efficient implementations of these models to exploit transformations

in statically type code that may make a mixed-type configuration

of a program more performant than the dynamically typed version.
Even just a sentence indicating on how other lines of research

on the performance

optimization on casts are orthogonal and can be applied so long

as they respect the design of GTT would be nice.

It would be great

if systems like Grift (that may be implementations of models of GTT)
could allow for greater performance gains in mixed type configurations
of programs over the dynamically typed configuration, since usually this
isn't the case.

The initial presentation of the main graduality theorem could use some
explanation (Theorem 5.8). On first appearance, some of the syntactic features
of the judgment in the conclusion of the rules are a bit confusing.

Why is the explicit downcast on the right hand side of the precision
relation necessary? Why is the explicit upcast on the left hand side

of the precision relation in the latter rule necessary?

This is a bit confusing to read, especially

since the original statement of the gradual guarantee in previous work used
a straightforward premise that terms were related by term precision. The
proof of the gradual guarantee

later used rules for handling extra casts on the left

or right expressions related by precision.

Is the statement of the theorem in this work

just related to the issue of homogeneous

term inequalities in CBPV*? At first glance homogeneous inequalities
seem quite restrictive in that you couldn't relate two lambda expressions
with different type annotations, but I assume that this is somehow

taken care of by the translation into CBPV*. If the answer to these
questions should be obvious, then I had trouble discerning it while

reading and other readers may face the same issue.

There are various typos throughout the paper that appeared due to some
modifications to syntax or added exposition. I list these typos and
other small gripes below:



Section 1:
> "We argue that existing gradual type soundness theorems are only
indirectly expressing..."

This seems like a stretch. In various common gradually typed settings, our
programs may not crash if we remove type annotations

(think operator overloading). I guess in that sense, the restriction

enables us to rewrite the program in ways that would be unsound if the
annotations were removed or optional typing was used. But the point
seems to be more about *preventing unwanted behaviors* than enabling
the exploitation of certain equivalences.

> Page 5: "The graduality principle states that..."

In practice, things like tagged values being encoded as objects

can actually break

graduality when used with certain dynamic language features like
isinstance, unless handled carefully.

I thought that the scheme-like extension in Section 5 was

nice in that a type-case expression worked with upcast values. Maybe
make a connection to that development here.

> Page 6: "return 5, returning 5, ..."
Change these to "return true" and "returning true".
> Page 7: "So this example shows us that (1) ..."

What would happen if a call by value language used a lazy cast semantics
on arguments in the absence of effects other than termination with
an error?

> Page 9: Introduction of the lazy product

Here the lazy product is brought up to discuss eta laws for CBN features.

But one thing essential to the work is the use of lazy products to define

the dynamic computation type's interpretation. If there were some other

CBN feature introduced into GTT to talk about embedding CBN, then would we be
unable to satisfactorily determine the dynamic computation type's

interpretation?

Section 2:



> Page 14: definition of complex values

Was there previous work on complex values, or is this a novel construction?
If there's previous work or some analogue, then cite it here.

> Page 15: trailing paren after "pure."

> Page 16: The stack with two holes in a product example.

Is the hole only used once because the laziness of the product means
that a projection will choose which of the two subexpressions using
the hole to actually run? A little bit more detail or an example
would make this clearer.

>Page 17: For CBN with: 1, &,+,0,->, 1, &

Delete the latter 1 and &

> Page 18: "Eis"

Add a space after the E.

> Page 20: Figure 4

Add an underline under the B's in UMon

> Page 22: "where the type on the right is less precise than the type on the right"

Change the latter "right" to "left".

Section 3:

> Theorem 3.2

Why does the last case assert precision while the others assert type?
> Page 30 "that all type constructors are monotone..."

"that" => "That"

> Page 31: On precision relation after "so transitivity gives the result"

Add an x' to the right of the cast on the middle part of the relation.



> Page 31: On precision relation after "identity extension gives the result"
Add an x' to the right of the cast on the middle part of the relation.

> Page 33: "The stipulation that some cast with the correct universal..."
Does this statement mean that implementations are free to choose different
implementations of how to factor casts for whatever types they might add
to GTT? Typically a ground type where a ?

is added to each argument to a type constructor is used as the type to factor
through.

> Page 37: "Given these two Theorems , ,"

Fix the broken ref.

> Page 37: absurd z

Since the "absurd" term first appears here, maybe state exactly how
this should differ from an error.

Section 4:

> Page 39: "translation of any CBV type.."

Delete the extra period.

> Figure 11:

Add an underline to the F in the translation of casts.

> Page 41: "However, there is... However, we can..."

Try to rewrite to eliminate the repetitive use of "However,".
> Page 41: "bindXtoYinZ"

Fix the macro use here.

Section 5:



> Page 42: "We translate GTT into a statically typed CBPV* language
where the casts of GTT are translated to "contracts" in GTT"

Change the latter "GTT" to "CBPV*".

> Page 42: "CBPV , (defined in Section 6)"
Eliminate the space after CBPV.

> Page 44: Definition 5.1 part 2.

Replace the substitution for x with a substitution for z.

Section 7:

Page 63: Figure 19

Why are there different arrows in the premise of the latter rule?
Page 67: Lemma 7.7 proof

In 2. Is the "ki" index intentional?

Section 8:

> Page 73 "it means that code:"

What was meant to be written after code?

> Future work about verifying a cast on list types as mapping a cast.

Verifying cast behaviors for

specific inductive types like immutable lists seems less difficult

then verifying inductive types in general. Do certain mutable collections
similar to lists post any difficulties?

Currently, mutable vectors

require a semantics similar to lazy products where getting and setting
memory locations at specific indexes

requires a cast each time. Are there any plans to

investigate references using GTT?






