
Synthetic Guarded Domain Theory +
Gradual Typing

Eric Giovannini and Max New

University of Michigan

MPLSE Reading Group
March 24, 2023

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 1 / 43

Overview

1 Introduction
Gradual Typing
SGDT

2 Graduality for GTLC
GTLC
Domain-Theoretic Constructions
Outline of Graduality Proof

3 Discussion and Lessons Learned

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 2 / 43

What is Gradual Typing?

Gradually-typed languages combine static and dynamic typing in a
single language and allow smooth interaction between both typed
and untyped code.

This allows programmers to get the best of both worlds: they can
start off programming in an untyped style and later annotate the
code with types.

Doing so should not alter the semantics of the program!

Gradually-typed languages are usually compiled to cast calculi
where the casts are made explicit.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 3 / 43

Graduality

Gradual Guarantee (Siek et al. [7]): Key property for a language to
be considered gradually-typed.
Adding type annotations should not change the semantics of the
program, except to possibly introduce type errors.

Conversely: Removing type annotations should not change the
behavior of the program.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 4 / 43

Type and Term Precision

Type Precision: A v B means that A is more precise than B, or
equivalently, B is more dynamic
Least precise type: ? (i.e., A v ? for all A)

Term precision: Extension of type precision to terms
Intuitively: M v N means “M behaves like N , but may error more”
For each type A, there is an error-term fA such that fA v M for all
M : A.

In the cast calculus, we allow casts between types A and B such
that A v B.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 5 / 43

The Current Approach to Proving Graduality

Define a notion of contextual error approximation (two programs
are equivalent, up to one erroring more than the other)

Construct a logical relations model and show that it is sound with
respect to contextual error approximation.

This approach has been utilized by New and Ahmed [5] and New,
Licata, and Ahmed [6].

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 6 / 43

Step Indexing

The logical relation must be step-indexed in order to deal with
issues of non-wellfoundnedness i.e. we index the relation by a
natural number representing the “fuel” we have left to observe the
expression. Whenever a non well-founded operation takes place,
we decrement the step-index.

This has a few downsides:
• Need to keep track of step index throughout the proofs
• Need two seaprate expression logical relations (one that

counts steps on the left, and one on the right)
• Transitivity of the logical relation is not straightforward

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 7 / 43

What is SGDT?

SGDT is a logic/type theory with certain new axioms that internalize
the notion of step-indexing.

There is an endofunctor B : Type→ Type, where B A represents
values of type A available one time step later.

There is a “delaying” function next : A→B A that takes a value
available now and views it as a value available later.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 8 / 43

SGDT: Guarded Fixpoints

Fixpoint operator fix : (B A→ A)→ A.

Idea: to construct an A “now“, it suffices to assume we have an A
“later“ and use that to build an A “now“.

When used for propositions, this is called “Löb-induction”.

Fix satisfies the following unrolling equation:

fix(f) = f (next(fix(f)))

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 9 / 43

Clocks and Clock Quantification

SGDT comes with a notion of clocks, abstract objects which keep
track of time steps.

The operations above are with repsect to a given clock κ, e.g, we
have Bκ.

The notion of clock quantification is crucial for encoding coinductive
types using guarded recursion, an idea first introduced by Atkey
and McBride [1].

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 10 / 43

The Topos of Trees Model

The denotational semantics of SGDT is in a category called the
topos of trees, denoted S = Setω

o .

Objects: presheaves over the ordered natural numbers, i.e.,
families {Xi} of sets indexed by natural numbers, along with
restriction maps rX

i : Xi+1 → Xi .

Morphisms {Xi} to {Yi}: family of functions fi : Xi → Yi that
commute with the restriction maps in the obvious way, that is,
fi ◦ rX

i = rY
i ◦ fi+1.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 11 / 43

Denotations of Later, Next, and Fix

The type operator B is defined on an object X by (B X)0 = 1 and
(B X)i+1 = Xi . The restriction maps are given by rB0 = !, where ! is
the unique map into 1, and rBi+1 = rX

i .

The morphism nextX : X →B X is defined pointwise by nextX0 = !,
and nextXi+1 = rX

i .

Given a morphism f : B X → X , we define fix f pointwise as
fixi(f) = fi ◦ · · · ◦ f0.

Note that as defined, fix isn’t actually a morphism in S: what is its
source? We need an object for functions from B X → X . This is the
internal hom B X ⇒ X .

We can then define fix : (B X ⇒ X)→ X ; we omit the details.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 12 / 43

Denotations of Later, Next, and Fix

In S In Set

X X0 X1 X2 X3 . . .

B X 1 X0 X1 X2 . . .

rX
0 rX

1 rX
2

!

next ! rX
0 rX

1 rX
2

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 13 / 43

Ticked Cubical Type Theory

In Ticked Cubical Type Theory [3], there is an additional sort called
ticks.

Given a clock k , a tick t : tick k serves as evidence that one unit of
time has passed according to the clock k .

The type Bk A is represented as a function from ticks of a clock k to
A.

The type A is allowed to depend on t , in which case we write Bk
t A

to emphasize the dependence.

The rules for tick abstraction and application are similar to those of
dependent Π types.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 14 / 43

1 Introduction
Gradual Typing
SGDT

2 Graduality for GTLC
GTLC
Domain-Theoretic Constructions
Outline of Graduality Proof

3 Discussion and Lessons Learned

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 15 / 43

GTLC: Syntax

Syntax

Types A,B := Nat, ?, (A⇒ B)

Terms M,N := fA, zro, suc M, (λx .M), (M N),

(〈B � A〉M), (〈A � B〉M)

Contexts Γ := ·, (Γ, x : A)

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 16 / 43

GTLC: Typing

Γ ` fA : A Γ ` zro : Nat
Γ ` M : Nat

Γ ` suc M : Nat

Γ, x : A ` M : B
Γ ` λx .M : A⇒ B

Γ ` M : A⇒ B Γ ` N : A
Γ ` M N : B

A v B Γ ` M : A
Γ ` 〈B � A〉M : B

A v B Γ ` M : B
Γ ` 〈A � B〉M : A

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 17 / 43

GTLC: Type Precision

? v?
?

Nat v Nat
Nat

Nat v?
InjNat

Ai v Bi Ao v Bo

(Ai ⇒ Ao) v (Bi ⇒ Bo)
⇒

(Ai → Ao) v (?⇒?)

(Ai → Ao) v ?
Inj⇒

Precision Derivations:
For every A v B, we have a type precision derivation d : A v B that is
constructed using the rules above.
For any type A, we use A to denote the reflexivity derivation that
A v A, i.e., A : A v A.
For type precision derivations d : A v B and d ′ : B v C, we can
define their composition d ′ ◦ d : A v C.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 18 / 43

GTLC: Term Precision

Three kinds of rules: Congruence, Equational, and Cast Rules

Congruence rules: one per term constructor (except for casts)
Two examples (other rules omitted):

d : A v B Γv(x) = (A,B)

Γv ` x ve x : d
Var

di : Ai v Bi do : Ao v Bo Γv, x : di ` M ve N : do

Γv ` λx .M ve λx .N : (di ⇒ do)
Lambda

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 19 / 43

GTLC: Term Precision

Equational Rules: Transitivity, β and η laws

Γv ` M ve N : d Γv ` N ve P : d ′

Γv ` M ve P : d ′ ◦ d
Transitivity

Γ ` V : Ai ⇒ Ao

Γv ` λx .(V x) wve V : Ai ⇒ Ao
η

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 20 / 43

GTLC: Term Precision

Cast Rules

d : A v B Γ ` M : A

Γv ` M ve 〈B � A〉M : d
UpR

d : A v B Γv ` M ve N : d

Γv ` 〈B � A〉M ve N : B
UpL

(The other rules DnL, DnR are dual.)

The cast rules say that upcasts are least upper bounds, and dually,
downcasts are greatest lower bounds.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 21 / 43

Graduality for GTLC

Theorem (Graduality at Base Type)
If · ` M v N : Nat, then

1 If N = f, then M = f
2 If N = V , then M = f or M = V , where V = zro or V = suc V ′

3 If M = V , then N = V

We also should be able to show that f, zro, and suc N are not equal.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 22 / 43

Intensional GTLC

In addition to the above language, which we call the extensional
GTLC (Ext-λC for short), we formalize the intensional GTLC (Int-λC
for short).
Int-λC includes syntax to express “delayed” terms as terms, via the
term constructor θs taking a term “later” to a term “now”.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 23 / 43

Intensional GTLC

Terms M,N := fA, . . . θs(M̃)

Typing:

Bt (Γ ` Mt : A)

Γ ` θsM : A

Term Precision:

Bt (Γv ` Mt vi Nt : d)

Γv ` θsM vi θsN : d

Recall that Bt is a dependent form of B where the arugment is
allowed to mention t . In particular, here we apply the tick t to the
later-terms M and N to get “now”-terms Mt and Nt .
Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 24 / 43

1 Introduction
Gradual Typing
SGDT

2 Graduality for GTLC
GTLC
Domain-Theoretic Constructions
Outline of Graduality Proof

3 Discussion and Lessons Learned

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 25 / 43

The Lift Monad

Datatype that represents computations that at each step can
return a value (η), terminate with an error (f), or “think”, i.e., defer
the result to a later step (θ).

Definition (Lift Monad)

LfA :=

η : A→ LfA
f : LfA
θ : B (LfA)→ LfA

There is a computation fix(θ) of type LfA; this represents a
computation that thinks forever and never returns a value.

Notation: We define δ : LfA→ LfA by δ = θ ◦ next

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 26 / 43

Predomains and Monotone Functions

A predomain A consists of a type (which we denote 〈A〉) and a
relation ≤A on A that satisfies the axioms of a partial ordering.
Since our types have an underlying order structure (representing
the error ordering), we want to model types as partially-ordered
sets in the semantics.

Then functions between terms will be modeled as monotone
functions between their corresponding predomains.
We write f : A→m B to indicate that f is a monotone function from
A to B, i.e, for all a1 ≤A a2, we have f (a1) ≤B f (a2).

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 27 / 43

Predomains

We define predomains for natural numbers, the dynamic type
(which we denote D), and for monotone functions between
predomains (which we denote Ai ⇒ Ao).

For Dyn, the underlying type is defined to be

〈D〉 = N + B (D →m D)

This definition is valid because the occurrences of D are guarded
by the B. The ordering is defined via guarded recursion by cases on
the argument.

We also define a predomain for the “lifting” of a predomain by the
Lf monad. We denote this by LfA.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 28 / 43

Lock-Step Ordering and Weak Bisimilarity

For a predomain A, the ordering on LfA is called the “lock-step
error ordering”, denoted l . l ′.
Intuitively: l is less than l ′ if they are in lock-step with regard to their
intensional behavior, up to l erroring.
• η x . η y if x ≤A y .
• f . l for all l
• θ r̃ . θ r̃ ′ if Bt (r̃t . r̃ ′t)

We analogously define a lifting of a heterogeneous relation R
between A and B to a relation L(R) between LfA and LfB.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 29 / 43

Lock-Step Ordering and Weak Bisimilarity

We also define another ordering on LfA, called “weak bisimilarity”,
written l ≈ l ′.
We say l ≈ l ′ if they are equivalent “up to delays”.

f ≈ f
η x ≈ η y if x ∼A y
θ x̃ ≈ θ ỹ if Bt (x̃t ≈ ỹt)

θ x̃ ≈ f if θ x̃ = δn(f) for some n
θ x̃ ≈ η y if (θ x̃ = δn(η x)) for some n and x : 〈A〉 such that x ∼A y
f ≈ θ ỹ if θ ỹ = δn(f) for some n
η x ≈ θ ỹ if (θ ỹ = δn(η y)) for some n and y : 〈A〉 such that x ∼A y

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 30 / 43

EP Pairs

We will model casts as EP-pairs.

Given predomains A and B, an EP-pair c : A B consists of
embc(·) : A→ B and projc(·) : B → LfA, and a monotone relation Rc
between A and B.

The relation Rc should be related in a specific way to the
embedding and projection functions.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 31 / 43

EP Pairs

We have an identity EP-pair id : A A, with the embedding and
projection equal to the identity and η, respectively.

Recall: D ∼= N + B (D →m D)

We have an EP-pair InjN, where the embedding is just inl and
Projection checks if the value of type D is a nat and returns it,
otherwise returns f.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 32 / 43

EP Pairs

We have an EP-pair Inj→ : (D → LfD) D. The embedding delays
the function and injects into the sum type of D: e(f) = inl(nextf) The
projection does case analysis on the value of type D, and if it is a
nat, returns f, otherwise, it it’s a delayed function f̃ , it returns

θt (η(f̃t)).

For EP pairs ci : Ai Bi and co : Ao Bo we have the EP-pair
ci ⇒ co : (Ai →m Ao) (Bi →m Bo).
The embedding and projection are defined functorially via the
embeddings and projections of the domain and codomain.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 33 / 43

EP Pairs: Semantics

We would like the semantic analogues of the cast rules to hold, e.g.,

c : A B M : 〈B〉
projc(M) L(R) M

DnL

Unfortunately, this does not hold, because the projection function
for Inj→ introduces a θ, and so the LHS and RHS are not in lock-step!

This problem leaks into the embedding functions as well via
functoriality in the ci ⇒ co case.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 34 / 43

Wait functions
To remedy this, we associate to each EP pair four “wait” functions
that mirror the structure of the embedding and projection
functions for their EP-pair.

we
l : A→m A

we
r : A→m A

wp
l : A→m LfA

wp
r : A→m LfA

Each wait function appears in one of the four semantic analogues
of the cast rules, i.e., the rule above becomes

c : A B M : 〈B〉
projc(M) L(R) wp

r (c)(M)
DnL

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 35 / 43

1 Introduction
Gradual Typing
SGDT

2 Graduality for GTLC
GTLC
Domain-Theoretic Constructions
Outline of Graduality Proof

3 Discussion and Lessons Learned

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 36 / 43

Main Theorem

Theorem (Graduality at Base Type)
If · ` Me ve Ne : Nat, then

1 If Ne = f, then Me = f
2 If Ne = V , then Me = f or Me = V , where V = zro or V = suc V ′

3 If Me = V , then Ne = V

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 37 / 43

Extensional Collapse

We define a “collapse” function b·c : Int-λC → Ext-λC that “forgets”
about the intensional delay information, i.e., all occurrences of θs
are erased.

Every term Me in Ext-λC will have a corresponding program Mi in
Int-λC such that bMic = Me.

Moreover, we will show that if Me ve M ′e in the extensional theory,
then there exists terms Mi and M ′i such that bMic = Me, bM ′i c = M ′e
and Mi vi M ′i in the intensional theory.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 38 / 43

The Current Picture

Int-λC Ext-λC

Int. Sem. Ext. Sem.

b·c

J·Ki

collapse

??

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 39 / 43

1 Introduction
Gradual Typing
SGDT

2 Graduality for GTLC
GTLC
Domain-Theoretic Constructions
Outline of Graduality Proof

3 Discussion and Lessons Learned

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 40 / 43

Benefits and Drawbacks

Positives:
• SGDT handles much of the tedious step-index reasoning
• Clarifies the underlying semantic and algebraic structure

Drawbacks:
• Intensional semantics is much more complicated (needed to

introduce wait functions)
• Still need to work “analytically” with monotone functions
• Need to do a lot of manual “unfolding” of fixpoint definitions in

Guarded Cubical Agda

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 41 / 43

References I

[1] Robert Atkey and Conor McBride.
Productive coprogramming with guarded recursion.
ACM SIGPLAN Notices 48, 9 (2013), 197-208.

[2] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian
Støvring.
First steps in synthetic guarded domain theory: step-indexing in the topos
of trees.
Logical Methods in Computer Science 8, 4 (2012).

[3] Rasmus Ejlers Møgelberg and Niccolò Veltri.
Bisimulation as path type for guarded recursive types.
Proc. ACM Program. Lang. 3, POPL Article 4 (January 2019)

[4] Rasmus E Møgelberg and Marco Paviotti.
Denotational semantics of recursive types in synthetic guarded domain
theory.
Mathematical Structures in Computer Science 29, 3 (2019), 465-510.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 42 / 43

References II

[5] Max S. New and Amal Ahmed.
Graduality from Embedding-Projection Pairs.
MProc. ACM Program. Lang. 2, ICFP, Article 73 (September 2018), 30 pages.

[6] Max S. New, Daniel R. Licata, and Amal Ahmed.
Gradual type theory.
Proc. ACM Program. Lang. 3, POPL, Article 15 (January 2019), 31 pages.

[7] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland
Refined Criteria for Gradual Typing
1st Summit on Advances in Programming Languages (SNAPL 2015).

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 43 / 43

	Introduction
	Gradual Typing
	SGDT

	Graduality for GTLC
	GTLC
	Domain-Theoretic Constructions
	Outline of Graduality Proof

	Discussion and Lessons Learned

