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What is Gradual Typing?

Gradually-typed languages combine static and dynamic typing in a
single language and allow smooth interaction between both typed
and untyped code.

This allows programmers to get the best of both worlds: they can
start off programming in an untyped style and later annotate the
code with types.

Doing so should not alter the semantics of the program!

Gradually-typed languages are usually compiled to cast calculi
where the casts are made explicit.
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Graduality

Gradual Guarantee (Siek et al. [7]): Key property for a language to
be considered gradually-typed.
Adding type annotations should not change the semantics of the
program, except to possibly introduce type errors.

Conversely: Removing type annotations should not change the
behavior of the program.
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Type and Term Precision

Type Precision: A v B means that A is more precise than B, or
equivalently, B is more dynamic
Least precise type: ? (i.e., A v ? for all A)

Term precision: Extension of type precision to terms
Intuitively: M v N means “M behaves like N , but may error more”
For each type A, there is an error-term fA such that fA v M for all
M : A.

In the cast calculus, we allow casts between types A and B such
that A v B.
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The Current Approach to Proving Graduality

Define a notion of contextual error approximation (two programs
are equivalent, up to one erroring more than the other)

Construct a logical relations model and show that it is sound with
respect to contextual error approximation.

This approach has been utilized by New and Ahmed [5] and New,
Licata, and Ahmed [6].
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Step Indexing

The logical relation must be step-indexed in order to deal with
issues of non-wellfoundnedness i.e. we index the relation by a
natural number representing the “fuel” we have left to observe the
expression. Whenever a non well-founded operation takes place,
we decrement the step-index.

This has a few downsides:
• Need to keep track of step index throughout the proofs
• Need two seaprate expression logical relations (one that

counts steps on the left, and one on the right)
• Transitivity of the logical relation is not straightforward
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What is SGDT?

SGDT is a logic/type theory with certain new axioms that internalize
the notion of step-indexing.

There is an endofunctor B : Type→ Type, where B A represents
values of type A available one time step later.

There is a “delaying” function next : A→B A that takes a value
available now and views it as a value available later.
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SGDT: Guarded Fixpoints

Fixpoint operator fix : (B A→ A)→ A.

Idea: to construct an A “now“, it suffices to assume we have an A
“later“ and use that to build an A “now“.

When used for propositions, this is called “Löb-induction”.

Fix satisfies the following unrolling equation:

fix(f ) = f (next(fix(f )))
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Clocks and Clock Quantification

SGDT comes with a notion of clocks, abstract objects which keep
track of time steps.

The operations above are with repsect to a given clock κ, e.g, we
have Bκ.

The notion of clock quantification is crucial for encoding coinductive
types using guarded recursion, an idea first introduced by Atkey
and McBride [1].
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The Topos of Trees Model

The denotational semantics of SGDT is in a category called the
topos of trees, denoted S = Setω

o .

Objects: presheaves over the ordered natural numbers, i.e.,
families {Xi} of sets indexed by natural numbers, along with
restriction maps rX

i : Xi+1 → Xi .

Morphisms {Xi} to {Yi}: family of functions fi : Xi → Yi that
commute with the restriction maps in the obvious way, that is,
fi ◦ rX

i = rY
i ◦ fi+1.
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Denotations of Later, Next, and Fix

The type operator B is defined on an object X by (B X )0 = 1 and
(B X )i+1 = Xi . The restriction maps are given by rB0 = !, where ! is
the unique map into 1, and rBi+1 = rX

i .

The morphism nextX : X →B X is defined pointwise by nextX0 = !,
and nextXi+1 = rX

i .

Given a morphism f : B X → X , we define fix f pointwise as
fixi(f ) = fi ◦ · · · ◦ f0.

Note that as defined, fix isn’t actually a morphism in S: what is its
source? We need an object for functions from B X → X . This is the
internal hom B X ⇒ X .

We can then define fix : (B X ⇒ X )→ X ; we omit the details.
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Denotations of Later, Next, and Fix

In S In Set

X X0 X1 X2 X3 . . .

B X 1 X0 X1 X2 . . .

rX
0 rX

1 rX
2

!

next ! rX
0 rX

1 rX
2
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Ticked Cubical Type Theory

In Ticked Cubical Type Theory [3], there is an additional sort called
ticks.

Given a clock k , a tick t : tick k serves as evidence that one unit of
time has passed according to the clock k .

The type Bk A is represented as a function from ticks of a clock k to
A.

The type A is allowed to depend on t , in which case we write Bk
t A

to emphasize the dependence.

The rules for tick abstraction and application are similar to those of
dependent Π types.
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GTLC: Syntax

Syntax

Types A,B := Nat, ?, (A⇒ B)

Terms M,N := fA, zro, suc M, (λx .M), (M N),

(〈B � A〉M), (〈A � B〉M)

Contexts Γ := ·, (Γ, x : A)
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GTLC: Typing

Γ ` fA : A Γ ` zro : Nat
Γ ` M : Nat

Γ ` suc M : Nat

Γ, x : A ` M : B
Γ ` λx .M : A⇒ B

Γ ` M : A⇒ B Γ ` N : A
Γ ` M N : B

A v B Γ ` M : A
Γ ` 〈B � A〉M : B

A v B Γ ` M : B
Γ ` 〈A � B〉M : A
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GTLC: Type Precision

? v?
?

Nat v Nat
Nat

Nat v?
InjNat

Ai v Bi Ao v Bo

(Ai ⇒ Ao) v (Bi ⇒ Bo)
⇒

(Ai → Ao) v (?⇒?)

(Ai → Ao) v ?
Inj⇒

Precision Derivations:
For every A v B, we have a type precision derivation d : A v B that is
constructed using the rules above.
For any type A, we use A to denote the reflexivity derivation that
A v A, i.e., A : A v A.
For type precision derivations d : A v B and d ′ : B v C, we can
define their composition d ′ ◦ d : A v C.
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GTLC: Term Precision

Three kinds of rules: Congruence, Equational, and Cast Rules

Congruence rules: one per term constructor (except for casts)
Two examples (other rules omitted):

d : A v B Γv(x) = (A,B)

Γv ` x ve x : d
Var

di : Ai v Bi do : Ao v Bo Γv, x : di ` M ve N : do

Γv ` λx .M ve λx .N : (di ⇒ do)
Lambda
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GTLC: Term Precision

Equational Rules: Transitivity, β and η laws

Γv ` M ve N : d Γv ` N ve P : d ′

Γv ` M ve P : d ′ ◦ d
Transitivity

Γ ` V : Ai ⇒ Ao

Γv ` λx .(V x) wve V : Ai ⇒ Ao
η

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 20 / 43



GTLC: Term Precision

Cast Rules

d : A v B Γ ` M : A

Γv ` M ve 〈B � A〉M : d
UpR

d : A v B Γv ` M ve N : d

Γv ` 〈B � A〉M ve N : B
UpL

(The other rules DnL, DnR are dual.)

The cast rules say that upcasts are least upper bounds, and dually,
downcasts are greatest lower bounds.
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Graduality for GTLC

Theorem (Graduality at Base Type)
If · ` M v N : Nat, then

1 If N = f, then M = f
2 If N = V , then M = f or M = V , where V = zro or V = suc V ′

3 If M = V , then N = V

We also should be able to show that f, zro, and suc N are not equal.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 22 / 43



Intensional GTLC

In addition to the above language, which we call the extensional
GTLC (Ext-λC for short), we formalize the intensional GTLC (Int-λC
for short).
Int-λC includes syntax to express “delayed” terms as terms, via the
term constructor θs taking a term “later” to a term “now”.
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Intensional GTLC

Terms M,N := fA, . . . θs(M̃)

Typing:

Bt (Γ ` Mt : A)

Γ ` θsM : A

Term Precision:

Bt (Γv ` Mt vi Nt : d)

Γv ` θsM vi θsN : d

Recall that Bt is a dependent form of B where the arugment is
allowed to mention t . In particular, here we apply the tick t to the
later-terms M and N to get “now”-terms Mt and Nt .
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The Lift Monad

Datatype that represents computations that at each step can
return a value (η), terminate with an error (f), or “think”, i.e., defer
the result to a later step (θ).

Definition (Lift Monad)

LfA :=

η : A→ LfA
f : LfA
θ : B (LfA)→ LfA

There is a computation fix(θ) of type LfA; this represents a
computation that thinks forever and never returns a value.

Notation: We define δ : LfA→ LfA by δ = θ ◦ next
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Predomains and Monotone Functions

A predomain A consists of a type (which we denote 〈A〉) and a
relation ≤A on A that satisfies the axioms of a partial ordering.
Since our types have an underlying order structure (representing
the error ordering), we want to model types as partially-ordered
sets in the semantics.

Then functions between terms will be modeled as monotone
functions between their corresponding predomains.
We write f : A→m B to indicate that f is a monotone function from
A to B, i.e, for all a1 ≤A a2, we have f (a1) ≤B f (a2).
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Predomains

We define predomains for natural numbers, the dynamic type
(which we denote D), and for monotone functions between
predomains (which we denote Ai ⇒ Ao).

For Dyn, the underlying type is defined to be

〈D〉 = N + B (D →m D)

This definition is valid because the occurrences of D are guarded
by the B. The ordering is defined via guarded recursion by cases on
the argument.

We also define a predomain for the “lifting” of a predomain by the
Lf monad. We denote this by LfA.
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Lock-Step Ordering and Weak Bisimilarity

For a predomain A, the ordering on LfA is called the “lock-step
error ordering”, denoted l . l ′.
Intuitively: l is less than l ′ if they are in lock-step with regard to their
intensional behavior, up to l erroring.
• η x . η y if x ≤A y .
• f . l for all l
• θ r̃ . θ r̃ ′ if Bt (r̃t . r̃ ′t )

We analogously define a lifting of a heterogeneous relation R
between A and B to a relation L(R) between LfA and LfB.
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Lock-Step Ordering and Weak Bisimilarity

We also define another ordering on LfA, called “weak bisimilarity”,
written l ≈ l ′.
We say l ≈ l ′ if they are equivalent “up to delays”.

f ≈ f
η x ≈ η y if x ∼A y
θ x̃ ≈ θ ỹ if Bt (x̃t ≈ ỹt )

θ x̃ ≈ f if θ x̃ = δn(f) for some n
θ x̃ ≈ η y if (θ x̃ = δn(η x)) for some n and x : 〈A〉 such that x ∼A y
f ≈ θ ỹ if θ ỹ = δn(f) for some n
η x ≈ θ ỹ if (θ ỹ = δn(η y)) for some n and y : 〈A〉 such that x ∼A y
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EP Pairs

We will model casts as EP-pairs.

Given predomains A and B, an EP-pair c : A B consists of
embc(·) : A→ B and projc(·) : B → LfA, and a monotone relation Rc
between A and B.

The relation Rc should be related in a specific way to the
embedding and projection functions.
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EP Pairs

We have an identity EP-pair id : A A, with the embedding and
projection equal to the identity and η, respectively.

Recall: D ∼= N + B (D →m D)

We have an EP-pair InjN, where the embedding is just inl and
Projection checks if the value of type D is a nat and returns it,
otherwise returns f.
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EP Pairs

We have an EP-pair Inj→ : (D → LfD) D. The embedding delays
the function and injects into the sum type of D: e(f ) = inl(nextf ) The
projection does case analysis on the value of type D, and if it is a
nat, returns f, otherwise, it it’s a delayed function f̃ , it returns

θt (η(f̃t )).

For EP pairs ci : Ai  Bi and co : Ao  Bo we have the EP-pair
ci ⇒ co : (Ai →m Ao) (Bi →m Bo).
The embedding and projection are defined functorially via the
embeddings and projections of the domain and codomain.

Eric Giovannini and Max New (U-M) SGDT + GTT March 24, 2023 33 / 43



EP Pairs: Semantics

We would like the semantic analogues of the cast rules to hold, e.g.,

c : A B M : 〈B〉
projc(M) L(R) M

DnL

Unfortunately, this does not hold, because the projection function
for Inj→ introduces a θ, and so the LHS and RHS are not in lock-step!

This problem leaks into the embedding functions as well via
functoriality in the ci ⇒ co case.
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Wait functions
To remedy this, we associate to each EP pair four “wait” functions
that mirror the structure of the embedding and projection
functions for their EP-pair.

we
l : A→m A

we
r : A→m A

wp
l : A→m LfA

wp
r : A→m LfA

Each wait function appears in one of the four semantic analogues
of the cast rules, i.e., the rule above becomes

c : A B M : 〈B〉
projc(M) L(R) wp

r (c)(M)
DnL
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Main Theorem

Theorem (Graduality at Base Type)
If · ` Me ve Ne : Nat, then

1 If Ne = f, then Me = f
2 If Ne = V , then Me = f or Me = V , where V = zro or V = suc V ′

3 If Me = V , then Ne = V
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Extensional Collapse

We define a “collapse” function b·c : Int-λC → Ext-λC that “forgets”
about the intensional delay information, i.e., all occurrences of θs
are erased.

Every term Me in Ext-λC will have a corresponding program Mi in
Int-λC such that bMic = Me.

Moreover, we will show that if Me ve M ′e in the extensional theory,
then there exists terms Mi and M ′i such that bMic = Me, bM ′i c = M ′e
and Mi vi M ′i in the intensional theory.
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The Current Picture

Int-λC Ext-λC

Int. Sem. Ext. Sem.

b·c

J·Ki

collapse

??
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Benefits and Drawbacks

Positives:
• SGDT handles much of the tedious step-index reasoning
• Clarifies the underlying semantic and algebraic structure

Drawbacks:
• Intensional semantics is much more complicated (needed to

introduce wait functions)
• Still need to work “analytically” with monotone functions
• Need to do a lot of manual “unfolding” of fixpoint definitions in

Guarded Cubical Agda
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