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We develop a denotational semantics for a simple gradually typed language that is adequate and proves the

graduality theorem. The denotational semantics is constructed using synthetic guarded domain theory working

in a type theory with a later modality and clock quantification. This provides a remarkably simple presentation

of the semantics, where gradual types are interpreted as ordinary types in our ambient type theory equipped

with an ordinary preorder structure to model the error ordering. This avoids the complexities of classical

domain-theoretic models (New and Licata) or logical relations models using explicit step-indexing (New and

Ahmed). In particular, we avoid a major technical complexity of New and Ahmed that requires two logical

relations to prove the graduality theorem.

By working synthetically we can treat the domains in which gradual types are interpreted as if they were

ordinary sets. This allows us to give a “naïve” presentation of gradual typing where each gradual type is

modeled as a well-behaved subset of the universal domain used to model the dynamic type, and type precision

is modeled as simply a subset relation.
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1 INTRODUCTION
1.1 Gradual Typing and Graduality
One of the principal categories on which type systems of programming languages are classified is

that of static versus dynamic type discipline. In static typing, the code is type-checked at compile

time, while in a dynamic typing, the type checking is deferred to run-time. Both approaches have

benefits: with static typing, the programmer is assured that if the program passes the type-checker,

their program is free of type errors. Meanwhile, dynamic typing allows the programmer to rapidly

prototype their application code without needing to commit to fixed type signatures for their

functions.

Gradually-typed languages [10] allow for both disciplines to be used in the same codebase, and

support interoperability between statically-typed and dynamically-typed code. This flexibility

allows programmers to begin their projects in a dynamic style and enjoy the benefits of dynamic

typing related to rapid prototyping and easy modification while the codebase “solidifies”. Over

time, as parts of the code become more mature and the programmer is more certain of what the

types should be, the code can be gradually migrated to a statically typed style without needing to

start the project over in a completely differnt language.

Gradually-typed languages should satisfy two intuitive properties. First, the interaction between

the static and dynamic components of the codebase should be safe – i.e., should preserve the
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guarantees made by the static types. In particular, while statically-typed code can error at runtime

in a gradually-typed language, such an error can always be traced back to a dynamically-typed

term that violated the typing contract imposed by statically typed code. Second, gradually-typed

langugaes should support the smooth migration from dynamic typing to static typing, in that the

programmer can initially leave off the typing annotations and provide them later without altering

the meaning of the program.

Formally speaking, gradually typed languages should satisfy the dynamic gradual guarantee,
originally defined by Siek, Vitousek, Cimini, and Boyland [11]. This property is also referred to as

graduality, by analogy with parametricity. Intuitively, graduality says that going from a dynamic to

static style should not introduce changes in the meaning of the program. More specifically, making

the types more precise by adding typing annotations will either result in the same behavior as the

original, less precise program, or will result in a type error.

1.2 Current Approaches to Proving Graduality
Current approaches to proving graduality include the methods of Abstracting Gradual Typing

[4] and the formal tools of the Gradualier [3]. These allow the language developer to start with a

statically typed langauge and derive a gradually typed language that satisfies the gradual guarantee.

The downside to these approaches is that the semantics of the resulting languages are too lazy: the

frameworks consider only the 𝛽 rules and not the 𝜂 equalities. Furthermore, while these frameworks

do prove graduality, they do not show the correctness of the equational theory, which is equally

important to sound gradual typing. For example, programmers often refactor their code without

thinking about whether the refactoring has broken the semantics of the program. It is the validity

of the laws in the equational theory that guarantees that such refactorings are sound. Similarly,

correctness of compiler optimizations rests on the validity of the corresponding equations from the

equational theory. It is therefore important that the langages that claim to be gradually typed have

provably correct equational theories.

New and Ahmed [8] have developed a semantic approach to specifying type dynamism in

terms of embedding-projection pairs, which allows for a particularly elegant formulation of the

gradual guarantee. Moreover, their axiomatic account of program equivalence allows for type-based

reasoning about program equivalences. In this approach, a logical relation is constructed and shown

to be sound with respect to the notion of observational approximation that specifies when one

program is more precise than another. The downside of this approach is that each new language

requires a different logical relation to prove graduality. Furthermore, the logical relations tend to be

quite complicated due to a technical requirement known as step-indexing. As a result, developments

using this approach tend to require vast effort, with the corresponding technical reports having

50+ pages of proofs.

An alternative approach, which we investigate in this paper, is provided by synthetic guarded
domain theory. The tecnhiques of synthetic guarded domain theory allow us to internalize the step-

index reasoning normally required in logical relations proofs of graduality, ultimately allowing us

to specify the logical relation in a manner that looks nearly identical to a typical, non-step-indexed

logical relation.

In this paper, we report on work we have done to mechanize proofs of graduality and correctness

of equational theories using SGDT techniques in Agda. Our goal in this work is to mechanize these

proofs in a reusable way, thereby providing a framework to use to more easily and conveniently

prove that existing languages satsify graduality and have sound equational theories. Moreover,

the aim is for designers of new languages to utlize the framework to facilitate the design of new

provably-correct gradually-typed languages with nontrivial features.
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1.3 Proving Graduality in SGDT
TODO: This section should probably bemoved to after the relevant background has been introduced.

In this paper, we will utilize SGDT techniques to prove graduality for a particularly simple

gradually-typed cast calculus, the gradually-typed lambda calculus. This is the usual simply-typed

lambda calculus with a dynamic type ? such that 𝐴 ⊑ ? for all types 𝐴, as well as upcasts and

downcasts between any types 𝐴 and 𝐵 such that 𝐴 ⊑ 𝐵. The complete definition will be provided

in Section 3. The graduality theorem is shown below.

Theorem 1.1 (Graduality). If · ⊢ 𝑀 ⊑ 𝑁 : Nat, then

(1) 𝑀 ⇓ iff 𝑁 ⇓
(2) If𝑀 ⇓ 𝑣? and 𝑁 ⇓ 𝑣 ′

?
then either 𝑣? = ℧, or 𝑣? = 𝑣 ′

?
.

Details can be found in later sections, but we provide a brief explanation of the terminology and

notation:

• 𝑀 ⊑ 𝑁 : Nat means𝑀 and 𝑁 are terms of type Nat such that𝑀 is “syntactically more precise”

than 𝑁 , or equivalently, 𝑁 is “more dynamic” than𝑀 . Intuitively this means that𝑀 and 𝑁

are the same except that in some places where 𝑀 has explicit typing annotations, 𝑁 has ?

instead.

• · ⇓ is a relation on terms that is defined such that𝑀 ⇓ means that𝑀 terminates, either with

a run-time error or a value 𝑛 of type Nat.

• ℧ is a syntactic representation of a run-time type error, which happens, for example, when a

programmer tries to call a function with a value whose type is found to be incompatible with

the argument type of the function.

• 𝑣? is shorthand for the syntactic representation of a term that is either equal to ℧, or equal to
the syntactic representation of a value 𝑛 of type Nat.

Our first step toward proving graduality is to formulate an step-sensitive, or intensional, gradual
lambda calculus, which we call Int-𝜆, in which the computation steps taken by a term are made

explicit. The “normal” gradual lambda calculus for which we want to prove graduality will be

called the step-insensitive, or extensional, gradual lambda calculus, denoted Ext-𝜆. We will define an

erasure function ⌊·⌋ : Int-𝜆 → Ext-𝜆 which takes a program in the intensional lambda calculus and

“forgets” the syntactic information about the steps to produce a term in the extensional calculus.

Every term 𝑀𝑒 in Ext-𝜆 will have a corresponding program 𝑀𝑖 in Int-𝜆 such that ⌊𝑀𝑖⌋ = 𝑀𝑒 .

Moreover, we will show that if𝑀𝑒 ⊑𝑒 𝑀
′
𝑒 in the extensional theory, then there exists terms𝑀𝑖 and

𝑀 ′
𝑖 such that ⌊𝑀𝑖⌋ = 𝑀𝑒 , ⌊𝑀 ′

𝑖 ⌋ = 𝑀 ′
𝑒 and𝑀𝑖 ⊑𝑖 𝑀

′
𝑖 in the intensional theory.

We formulate and prove an analogous graduality theorem for the intensional lambda calculus. We

define an interpretation of the intensional lambda calculus into a model in which we prove various

results. Using the observation above, given𝑀𝑒 ⊑ 𝑀 ′
𝑒 : Nat, we can find intensional programs𝑀𝑖

and𝑀 ′
𝑖 that erase to them and are such that𝑀𝑖 ⊑ 𝑀 ′

𝑖 . We will then apply the intensional graduality

theorem to𝑀𝑖 and𝑀
′
𝑖 , and translate the result back to𝑀𝑒 and𝑀

′
𝑒 .

1.4 Contributions
Our main contribution is a reusable framework in Guarded Cubical Agda for developing machine-

checked proofs of graduality of a cast calculus. To demonstrate the feasability and utility of

our approach, we have used the framework to prove graduality for the simply-typed gradual

lambda calculus. Along the way, we have developed an “intensional" theory of graduality that is of

independent interest.
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1.5 Overview of Remainder of Paper
In Section 2, we provide technical background on gradually typed languages and on synthetic

guarded domain theory. In Section 3, we introduce the gradually-typed cast calculus for which we

will prove graduality. Important here are the notions of syntactic type precision and term precision.

We introduce both the extensional gradual lambda calculus (Ext-𝜆) and the intensional gradual
lambda calculus (Int-𝜆). In Section 4, we define several fundamental constructions internal to SGDT

that will be needed when we give a denotational semantics to our intensional lambda calculus.

This includes the notion of Predomains as well as the concept of EP-Pairs. In Section 5, we define

the denotational semantics for the intensional gradually-typed lambda calculus using the domain

theoretic constructions in the previous section. In Section 7, we outline in more detail the proof of

graduality for the extensional gradual lambda calculus, which will make use of prove properties

we prove about the intensional gradual lambda calculus. In Section 8, we discuss the benefits and

drawbacks to our approach in comparison to the traditional step-indexing approach, as well as

possibilities for future work.

2 TECHNICAL BACKGROUND
2.1 Gradual Typing
In a gradually-typed language, the mixing of static and dynamic code is seamless, in that the

dynamically typed parts are checked at runtime. This type checking occurs at the elimination

forms of the language (e.g., pattern matching, field reference, etc.). Gradual languages are generally

elaborated to a cast calculus, in which the dynamic type checking is made explicit through the

insertion of type casts.
In a cast calculus, there is a relation ⊑ on types such that 𝐴 ⊑ 𝐵 means that 𝐴 is a more precise

type than 𝐵. There a dynamic type ? with the property that 𝐴 ⊑ ? for all 𝐴. If 𝐴 ⊑ 𝐵, a term𝑀 of

type 𝐴 may be upcasted to 𝐵, written ⟨𝐵 ↢ 𝐴⟩𝑀 , and a term 𝑁 of type 𝐵 may be downcasted to 𝐴,

written ⟨𝐴 ↞ 𝐵⟩𝑁 . Upcasts always succeed, while downcasts may fail at runtime. We also have a

notion of syntactic term precision. If 𝐴 ⊑ 𝐵, and𝑀 and 𝑁 are terms of type 𝐴 and 𝐵 respectively,

we write 𝑀 ⊑ 𝑁 : 𝐴 ⊑ 𝐵 to mean that 𝑀 is more precise than 𝑁 , i.e., 𝑀 and 𝑁 behave the same

except that𝑀 may error more.

2.2 Difficulties in Prior Semantics
In this work, we compare our approach to proving graduality to the approach introduced by New

and Ahmed [8] which constructs a step-indexed logical relations model and shows that this model

is sound with respect to their notion of contextual error approximation.

Because the dynamic type is modeled as a non-well-founded recursive type, their logical relation

needs to be paramterized by natural numbers to restore well-foundedness. This technique is known

as a step-indexed logical relation. Reasoning about step-indexed logical relations can be tedious and

error-prone, and there are some very subtle aspects that must be taken into account in the proofs.

Figure ?? shows an example of a step-indexed logical relation for the gradually-typed lambda

calculus.

In particular, the prior approach of New and Ahmed requires two separate logical relations for

terms, one in which the steps of the left-hand term are counted, and another in which the steps of

the right-hand term are counted. Then two terms𝑀 and 𝑁 are related in the “combined” logical

relation if they are related in both of the one-sided logical relations. Having two separate logical

relations complicates the statement of the lemmas used to prove graduality, becasue any statement

that involves a term stepping needs to take into account whether we are counting steps on the left
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or the right. Some of the differences can be abstracted over, but difficulties arise for properties as

fundamental and seemingly straightforward as transitivty.

Specifically, for transitivity, we would like to say that if 𝑀 is related to 𝑁 at index 𝑖 and 𝑁 is

related to 𝑃 at index 𝑖 , then𝑀 is related to 𝑃 at 𝑖 . But this does not actually hold: we requrie that

one of the two pairs of terms be related “at infinity”, i.e., that they are related at 𝑖 for all 𝑖 ∈ N.
Which pair is required to satisfy this depends on which logical relation we are considering, (i.e., is

it counting steps on the left or on the right), and so any argument that uses transitivity needs to

consider two cases, one where𝑀 and 𝑁 must be shown to be related for all 𝑖 , and another where

𝑁 and 𝑃 must be related for all 𝑖 .

2.3 Synthetic Guarded Domain Theory
One way to avoid the tedious reasoning associated with step-indexing is to work axiomatically

inside of a logical system that can reason about non-well-founded recursive constructions while

abstracting away the specific details of step-indexing required if we were working analytically. The

system that proves useful for this purpose is called synthetic guarded domain theory, or SGDT for

short. We provide a brief overview here, but more details can be found in [2].

SGDT offers a synthetic approach to domain theory that allows for guarded recursion to be

expressed syntactically via a type constructor ▷: Type → Type (pronounced “later”). The use of a

modality to express guarded recursion was introduced by Nakano [7]. Given a type 𝐴, the type

▷ 𝐴 represents an element of type 𝐴 that is available one time step later. There is an operator

next : 𝐴 →▷ 𝐴 that “delays” an element available now to make it available later. We will use a

tilde to denote a term of type ▷ 𝐴, e.g., 𝑀̃ .

There is a guarded fixpoint operator

fix : ∀𝑇, (▷ 𝑇 → 𝑇 ) → 𝑇 .

That is, to construct a term of type 𝑇 , it suffices to assume that we have access to such a

term “later” and use that to help us build a term “now”. This operator satisfies the axiom that

fix𝑓 = 𝑓 (next(fix𝑓 )). In particular, this axiom applies to propositions 𝑃 : Prop; proving a statement

in this manner is known as Löb-induction.

The operators ▷, , and fix described above can be indexed by objects called clocks. A clock serves

as a reference relative to which steps are counted. For instance, given a clock 𝑘 and type𝑇 , the type

▷𝑘 𝑇 represents a value of type 𝑇 one unit of time in the future according to clock 𝑘 . If we only

ever had one clock, then we would not need to bother defining this notion. However, the notion of

clock quantification is crucial for encoding coinductive types using guarded recursion, an idea first

introduced by Atkey and McBride [1].

2.3.1 Ticked Cubical Type Theory. In Ticked Cubical Type Theory [? ], there is an additional sort

called ticks. Given a clock 𝑘 , a tick 𝑡 : tick𝑘 serves as evidence that one unit of time has passed

according to the clock 𝑘 . The type ▷ 𝐴 is represented as a function from ticks of a clock 𝑘 to 𝐴. The

type 𝐴 is allowed to depend on 𝑡 , in which case we write ▷𝑘𝑡 𝐴 to emphasize the dependence.

The rules for tick abstraction and application are similar to those of dependent Π types. In

particular, if we have a term𝑀 of type ▷𝑘 𝐴, and we have available in the context a tick 𝑡 ′ : tick𝑘 ,
then we can apply the tick to𝑀 to get a term𝑀 [𝑡 ′] : 𝐴[𝑡 ′/𝑡]. We will also write tick application as

𝑀𝑡 . Conversely, if in a context Γ, 𝑡 : tick𝑘 we have that 𝑀 has type 𝐴, then in context Γ we have

𝜆𝑡 .𝑀 has type ▷ 𝐴.

The statements in this paper have been formalized in a variant of Agda called Guarded Cubical

Agda [? ], an implementation of Clocked Cubical Type Theory.
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𝑋0 𝑋1 𝑋2 𝑋3 . . .
𝑟𝑋
0

𝑟𝑋
1

𝑟𝑋
2

𝑟𝑋
3

Fig. 1. An example of an object in the topos of trees.

𝑋0 𝑋1 𝑋2 𝑋3 . . .

𝑌0 𝑌1 𝑌2 𝑌3 . . .

𝑟𝑋
0

𝑟𝑋
1

𝑟𝑋
2

𝑟𝑋
3

𝑟𝑌
0

𝑟𝑌
1

𝑟𝑌
2

𝑟𝑌
3

𝑓0 𝑓1 𝑓2 𝑓3

Fig. 2. An example of a morphism in the topos of trees.

1

𝑋0 𝑋1 𝑋2 𝑋3 . . .
𝑟𝑋
0

𝑟𝑋
2

fix(𝑓 )0 fix(𝑓 )1 fix(𝑓 )2 fix(𝑓 )3 · · ·

𝑟𝑋
1

𝑟𝑋
3

Fig. 3. The guarded fixpoint of 𝑓 .

2.3.2 The Topos of Trees Model. The topos of trees model provides a useful intuition for reasoning

in SGDT [2]. This section presupposes knowledge of category theory and can be safely skipped

without disrupting the continuity.

The topos of trees S is the presheaf category Set𝜔
𝑜

. We assume a universe U of types, with

encodings for operations such as sum types (written as +̂). There is also an operator ▷̂ : ▷ U → U
such that El(▷̂(next𝐴)) = ▷ El(𝐴), where El is the type corresponding to the code 𝐴.

An object 𝑋 is a family {𝑋𝑖 } of sets indexed by natural numbers, along with restriction maps

𝑟𝑋𝑖 : 𝑋𝑖+1 → 𝑋𝑖 (see Figure 1). These should be thought of as “sets changing over time", where 𝑋𝑖 is

the view of the set if we have 𝑖 + 1 time steps to reason about it. We can also think of an ongoing

computation, with 𝑋𝑖 representing the potential results of the computation after it has run for 𝑖 + 1

steps.

A morphism from {𝑋𝑖 } to {𝑌𝑖 } is a family of functions 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 that commute with the

restriction maps in the obvious way, that is, 𝑓𝑖 ◦ 𝑟𝑋𝑖 = 𝑟𝑌𝑖 ◦ 𝑓𝑖+1 (see Figure 2).
The type operator ▷ is defined on an object 𝑋 by (▷ 𝑋 )0 = 1 and (▷ 𝑋 )𝑖+1 = 𝑋𝑖 . The restric-

tion maps are given by 𝑟▷
0
= !, where ! is the unique map into 1, and 𝑟▷𝑖+1 = 𝑟𝑋𝑖 . The morphism

next𝑋 : 𝑋 →▷ 𝑋 is defined pointwise by next𝑋
0
= !, and next𝑋𝑖+1 = 𝑟𝑋𝑖 . It is easily checked that this sat-

isfies the commutativity conditions required of a morphism in S. Given a morphism 𝑓 : ▷ 𝑋 → 𝑋 ,

i.e., a family of functions 𝑓𝑖 : (▷ 𝑋 )𝑖 → 𝑋𝑖 that commute with the restrictions in the appropriate

way, we define fix(𝑓 ) : 1 → 𝑋 pointwise by fix(𝑓 )𝑖 = 𝑓𝑖 ◦ · · · ◦ 𝑓0. This can be visualized as a diagram

in the category of sets as shown in Figure 3.

3 GTLC
Here we describe the syntax and typing for the gradually-typed lambda calculus. We also give the

rules for syntactic type and term precision.
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Before diving into the details, let us give a brief overview of what we will define. We begin with

a gradually-typed lambda calculus (Ext-𝜆), which is similar to the normal call-by-value gradually-

typed lambda calculus, but differs in that it is actually a fragment of call-by-push-value specialized

such that there are no non-trivial computation types. We do this for convenience, as either way we

would need a distinction between values and effectful terms; the framework of of call-by-push-value

gives us a convenient langugae to define what we need.

We then show that composition of type precision derivations is admissible, as is heterogeneous

transitivity for term precision, so it will suffice to consider a new language (Ext-𝜆−trans) in which

we don’t have composition of type precision derivations or heterogeneous transitivity of term

precision.

We then observe that all casts, except those between Nat and ? and between ? ⇀? and ?, are

admissible. This means it will be sufficient to consider a new language (Ext-𝜆−trans−cast) in which

instead of having arbitrary casts, we have injections from Nat and ? ⇀? into ?, and case inspections

from ? to Nat and ? to ? ⇀?.

From here, we define a step-sensitive (also called intensional) GSTLC, so-named because it makes

the intensional stepping behavior of programs explicit in the syntax. This is acocmplished by adding

a syntactic “later” type and a syntactic 𝜃 that maps terms of type later 𝐴 to terms of type 𝐴.

3.1 Syntax
The language is based on Call-By-Push-Value [5], and as such it has two kinds of types: value types,
representing pure values, and computation types, represting potentially effectful computations. In

the language, all computation types have the form Ret𝐴 for some value type 𝐴. Given a value

𝑉 of type 𝐴, the term ret𝑉 views 𝑉 as a term of computation type Ret𝐴. Given a term 𝑀 of

computation type 𝐵, the term var 𝑥 = 𝑀 in 𝑁 should be thought of as running𝑀 to a value 𝑉 and

then continuning as 𝑁 , with 𝑉 in place of 𝑥 .

We also have value contexts and computation contexts, where the latter can be viewed as a pair

consisting of (1) a stoup Σ, which is either empty or a hole of type 𝐵, and (2) a (potentially empty)

value context Γ.

Value Types 𝐴 := Nat | ? | (𝐴 ⇀ 𝐴′)
Computation Types 𝐵 := Ret𝐴

Value Contexts Γ := · | (Γ, 𝑥 : 𝐴)
Computation Contexts Δ := · | • : 𝐵 | Δ, 𝑥 : 𝐴

Values 𝑉 := zro | suc𝑉 | ⟨𝐵 ↢ 𝐴⟩𝑉
Terms𝑀, 𝑁 := ℧𝐵 | ret𝑉 | var 𝑥 = 𝑀 in 𝑁 | 𝜆𝑥 .𝑀 | 𝑉𝑓 𝑉𝑥 | | ⟨𝐴 ↞ 𝐵⟩𝑀

The value typing judgment is written Γ ⊢ 𝑉 : 𝐴 and the computation typing judgment is written

Δ ⊢ 𝑀 : 𝐵.

We define substitution for value contexts by the following rules:

𝛾 : Γ′ → Γ Γ′ ⊢ 𝑉 : 𝐴

(𝛾,𝑉 /𝑥) : Γ′ → Γ, 𝑥 : 𝐴 · : · → ·

We define substitution for computation contexts by the following rules:
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𝛿 : Δ′ → Δ Δ′ |𝑉 ⊢ 𝑉 : 𝐴

(𝛿,𝑉 /𝑥) : Δ′ → Δ, 𝑥 : 𝐴 · : · → ·
Δ′ ⊢ 𝑀 : 𝐵

𝑀 : Δ′ → • : 𝐵
The typing rules are as expected, with a cast between 𝐴 to 𝐵 allowed only when 𝐴 ⊑ 𝐵. Notice

that the upcast of a value is a value, since it always succeeds, while the downcast of a value is a

computation, since it may fail.

·, Γ ⊢ ℧𝐵 : 𝐵 Γ ⊢ zro : Nat
Γ ⊢ 𝑉 : Nat

Γ ⊢ suc𝑉 : Nat

·, Γ, 𝑥 : 𝐴 ⊢ 𝑀 : Ret𝐴′

Γ ⊢ 𝜆𝑥 .𝑀 : 𝐴 ⇀ 𝐴′

Γ ⊢ 𝑉𝑓 : 𝐴 ⇀ 𝐴′ Γ ⊢ 𝑉𝑥 : 𝐴
·, Γ ⊢ 𝑉𝑓 𝑉𝑥 : Ret𝐴′

Γ ⊢ 𝑉 : 𝐴

·, Γ ⊢ ret𝑉 : Ret𝐴

Δ ⊢ 𝑀 : Ret𝐴 ·,Δ|𝑉 , 𝑥 : 𝐴 ⊢ 𝑁 : 𝐵

Δ ⊢ var 𝑥 = 𝑀 in 𝑁 : 𝐵

𝐴 ⊑ 𝐴′ Γ ⊢ 𝑉 : 𝐴

Γ ⊢ ⟨𝐴′ ↢ 𝐴⟩𝑉 : 𝐴′
𝐴 ⊑ 𝐴′ Γ ⊢ 𝑉 : 𝐴′

·, Γ ⊢ ⟨𝐴 ↞ 𝐴′⟩𝑉 : Ret𝐴

In the equational theory, we have 𝛽 and 𝜂 laws for function type, as well a 𝛽 and 𝜂 law for Ret𝐴.

·, Γ, 𝑥 : 𝐴 ⊢ 𝑀 : Ret𝐴′ Γ ⊢ 𝑉 : 𝐴

(𝜆𝑥.𝑀)𝑉 = 𝑀 [𝑉 /𝑥]
Γ ⊢ 𝑉 : 𝐴 ⇀ 𝐴

Γ ⊢ 𝑉 = 𝜆𝑥.𝑉 𝑥 var 𝑥 = ret𝑉 in 𝑁 = 𝑁 [𝑉 /𝑥]

• : Ret𝐴, Γ ⊢ 𝑀 : 𝐵

• : Ret𝐴, Γ ⊢ 𝑀 = var 𝑥 = • in𝑀 [ret𝑥]

3.2 Type Precision
The type precision rules specify what it means for a type 𝐴 to be more precise than 𝐴′

. We have

reflexivity rules for ? and Nat, as well as rules that Nat is more precise than ? and ? ⇀? is more

precise than ?. We also have a transitivity rule for composition of type precision, and also a rule for

function types stating that given 𝐴𝑖 ⊑ 𝐴′
𝑖 and 𝐴𝑜 ⊑ 𝐴′

𝑜 , we can prove 𝐴𝑖 ⇀ 𝐴𝑜 ⊑ 𝐴′
𝑖 ⇀ 𝐴′

𝑜 . Finally,

we can lift a relation on value types 𝐴 ⊑ 𝐴′
to a relation Ret𝐴 ⊑ Ret𝐴′

on computation types.

? ⊑ ?

?

Nat ⊑ Nat

Nat

Nat ⊑ ?

𝐼𝑛 𝑗Nat
𝐴𝑖 ⊑ 𝐴′

𝑖 𝐴𝑜 ⊑ 𝐴′
𝑜

(𝐴𝑖 ⇒ 𝐴𝑜 ) ⊑ (𝐴′
𝑖 ⇒ 𝐴′

𝑜 )
⇒

(? ⇀?) ⊑ ?

𝐼𝑛 𝑗⇒
𝐴 ⊑ 𝐴′ 𝐴′ ⊑ 𝐴′′

𝐴 ⊑ 𝐴′′ ValComp

𝐵 ⊑ 𝐵′ 𝐵′ ⊑ 𝐵′′

𝐵 ⊑ 𝐵′′ CompComp

𝐴 ⊑ 𝐴′

Ret𝐴 ⊑ Ret𝐴′ Ret

Note that as a consequence of this presentation of the type precision rules, we have that if𝐴 ⊑ 𝐴′
,

there is a unique precision derivation that witnesses this. As in previous work, we go a step farther

and make these derivations first-class objects, known as type precision derivations. Specifically, for
every𝐴 ⊑ 𝐴′

, we have a derivation 𝑐 : 𝐴 ⊑ 𝐴′
that is constructed using the rules above. For instance,
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there is a derivation ? :? ⊑?, and a derivation Nat : Nat ⊑ Nat, and if 𝑐𝑖 : 𝐴𝑖 ⊑ 𝐴𝑖 and 𝑐𝑜 : 𝐴𝑜 ⊑ 𝐴′
𝑜 ,

then there is a derivation 𝑐𝑖 ⇒ 𝑐𝑜 : (𝐴𝑖 ⇒ 𝐴𝑜 ) ⊑ (𝐴′
𝑖 ⇒ 𝐴′

𝑜 ). Likewise for the remaining rules. The

benefit to making these derivations explicit in the syntax is that we can perform induction over

them. Note also that for any type 𝐴, we use 𝐴 to denote the reflexivity derivation that 𝐴 ⊑ 𝐴, i.e.,

𝐴 : 𝐴 ⊑ 𝐴. Finally, observe that for type precision derivations 𝑐 : 𝐴 ⊑ 𝐴′
and 𝑐 ′ : 𝐴′ ⊑ 𝐴′′

, we can

define (via the rule ValComp) their composition 𝑐 ⊙ 𝑐 ′ : 𝐴 ⊑ 𝐴′′
. The same holds for computation

type precision derivations. This notion will be used below in the statement of transitivity of the

term precision relation.

3.3 Term Precision
We allow for a heterogeneous term precision judgment on terms values 𝑉 of type 𝐴 and 𝑉 ′

of type

𝐴′
provided that 𝐴 ⊑ 𝐴′

holds. Likewise, for computation types 𝐵 ⊑ 𝐵′
, if𝑀 has type 𝐵 and𝑀 ′

has

type 𝐵′
, we can form the judgment that𝑀 ⊑ 𝑀 ′

.

In order to deal with open terms, we will need the notion of a type precision context, which
we denote Γ⊑

. This is similar to a normal context but instead of mapping variables to types, it

maps variables 𝑥 to related types 𝐴 ⊑ 𝐵, where 𝑥 has type 𝐴 in the left-hand term and 𝐵 in the

right-hand term. We may also write 𝑥 : 𝑑 where 𝑑 : 𝐴 ⊑ 𝐵 to indicate this. Another way of thinking

of type precision contexts is as a zipped pair of contexts Γ𝑙 , Γ𝑟 with the same domain such that

Γ𝑙 (𝑥) ⊑ Γ𝑟 (𝑥) for each 𝑥 in the domain. Similarly, we have computation type precision contexts Δ⊑
.

Similar to “normal” computation type precision contexts Δ, these consist of (1) a stoup Σ which is

either empty or has a hole • : 𝑑 for some computation type precision derivation 𝑑 , and (2) a value

type precision context Γ⊑
.

As with type precision derivations, we write Γ to mean the context of reflexivity derivations

Γ(𝑥) ⊑ Γ(𝑥). Likewise for computation type precision contexts. Furthermore, we write Γ⊑
1
⊙ Γ⊑

2

to denote the “composition” of Γ⊑
1
and Γ⊑

2
— that is, the precision context whose value at 𝑥 is the

type precision derivation Γ⊑
1
(𝑥) ⊙ Γ⊑

2
(𝑥). This of course assumes that each of the type precision

derivations is composable, i.e., that the RHS of Γ⊑
1
(𝑥) is the same as the left-hand side of Γ⊑

2
(𝑥).

We define the same for computation type precision contexts Δ⊑
1
and Δ⊑

2
, provided that both the

computation type precision contexts have the same “shape”, which is defined as (1) either the stoup

is empty in both, or the stoup has a hole in both, say • : 𝑑 and • : 𝑑 ′
where 𝑑 and 𝑑 ′

are composable,

and (2) their value type precision contexts are composable as described above.

The rules for term precision come in two forms. We first have the congruence rules, one for each
term constructor. These assert that the term constructors respect term precision. The congruence

rules are as follows:

9
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𝑐 : 𝐴 ⊑ 𝐵 Γ⊑ (𝑥) = (𝐴, 𝐵)
Γ⊑ ⊢ 𝑥 ⊑𝑒 𝑥 : 𝑐

Var

Γ⊑ ⊢ zro ⊑𝑒 zro : Nat
Zro

Γ⊑ ⊢ 𝑉 ⊑𝑒 𝑉
′
: Nat

Γ⊑ ⊢ suc𝑉 ⊑𝑒 suc𝑉 ′
: Nat

Suc

𝑐𝑖 : 𝐴𝑖 ⊑ 𝐴′
𝑖 𝑐𝑜 : 𝐴𝑜 ⊑ 𝐴′

𝑜 ·, Γ⊑, 𝑥 : 𝑐𝑖 ⊢ 𝑀 ⊑𝑒 𝑀
′
: Ret 𝑐𝑜

Γ⊑ ⊢ 𝜆𝑥 .𝑀 ⊑𝑒 𝜆𝑥.𝑀
′
: (𝑐𝑖 ⇀ 𝑐𝑜 )

Lambda

𝑐𝑖 : 𝐴𝑖 ⊑ 𝐴′
𝑖 𝑐𝑜 : 𝐴𝑜 ⊑ 𝐴′

𝑜

Γ⊑ ⊢ 𝑉𝑓 ⊑𝑒 𝑉
′
𝑓
: (𝑐𝑖 ⇀ 𝑐𝑜 ) Γ⊑ ⊢ 𝑉𝑥 ⊑𝑒 𝑉

′
𝑥 : 𝑐𝑖

·, Γ⊑ ⊢ 𝑉𝑓 𝑉𝑥 ⊑𝑒 𝑉
′
𝑓
𝑉 ′
𝑥 : Ret 𝑐𝑜

App

Γ⊑ ⊢ 𝑉 ⊑𝑒 𝑉
′
: 𝑐

·, Γ⊑ ⊢ ret𝑉 ⊑𝑒 ret𝑉 ′
: Ret 𝑐

Ret

Δ⊑ ⊢ 𝑀 ⊑𝑒 𝑀
′
: Ret 𝑐 ·,Δ⊑ |𝑉 , 𝑥 : 𝑐 ⊢ 𝑁 ⊑𝑒 𝑁

′
: 𝑑

Δ⊑ ⊢ var 𝑥 = 𝑀 in 𝑁 ⊑𝑒 var 𝑥 = 𝑀 ′
in 𝑁 ′

: 𝑑
Bind

We then have additional equational axioms, including transitivity, 𝛽 and 𝜂 laws, and rules

characterizing upcasts as least upper bounds, and downcasts as greatest lower bounds.

We write𝑀 ⊒⊑ 𝑁 to mean that both𝑀 ⊑ 𝑁 and 𝑁 ⊑ 𝑀 .

Δ⊑
𝑙
⊢ 𝑀 : 𝐵

Δ ⊢ ℧𝐵 ⊑𝑒 𝑀 : 𝐵
℧

𝑑 : 𝐵 ⊑ 𝐵′ 𝑑 ′
: 𝐵′ ⊑ 𝐵′′

Δ⊑
1
⊢ 𝑀 ⊑𝑒 𝑀

′
: 𝑑 Δ⊑

2
⊢ 𝑀 ′ ⊑𝑒 𝑀

′′
: 𝑑 ′

Δ⊑
1
⊙ Δ⊑

2
⊢ 𝑀 ⊑𝑒 𝑀

′′
: 𝑑 ⊙ 𝑑 ′ Transitivity

Γ, 𝑥 : 𝐴𝑖 ⊢ 𝑀 : 𝐴𝑜 Γ ⊢ 𝑉 : 𝐴𝑖

Γ⊑ ⊢ (𝜆𝑥.𝑀)𝑉 ⊒⊑𝑒 𝑀 [𝑉 /𝑥] : 𝐴𝑜

𝛽-fun
Γ ⊢ 𝑉 : 𝐴𝑖 ⇒ 𝐴𝑜

Γ⊑ ⊢ 𝜆𝑥 .(𝑉 𝑥) ⊒⊑𝑒 𝑉 : 𝐴𝑖 ⇒ 𝐴𝑜

𝜂-fun

var 𝑥 = ret𝑉 in 𝑁 = 𝑁 [𝑉 /𝑥] 𝛽-ret
• : Ret𝐴, Γ ⊢ 𝑀 : 𝐵

• : Ret𝐴, Γ ⊢ 𝑀 = var 𝑥 = • in𝑀 [ret𝑥]
𝜂-ret

𝑑 : 𝐴 ⊑ 𝐵 Γ ⊢ 𝑀 : 𝐴

Γ⊑ ⊢ 𝑀 ⊑𝑒 ⟨𝐵 ↢ 𝐴⟩𝑀 : 𝑑
UpR

𝑑 : 𝐴 ⊑ 𝐵 Γ⊑ ⊢ 𝑀 ⊑𝑒 𝑁 : 𝑑

Γ⊑ ⊢ ⟨𝐵 ↢ 𝐴⟩𝑀 ⊑𝑒 𝑁 : 𝐵
UpL

𝑑 : 𝐴 ⊑ 𝐵 Γ ⊢ 𝑀 : 𝐵

Γ⊑ ⊢ ⟨𝐴 ↞ 𝐵⟩𝑀 ⊑𝑒 𝑀 : 𝑑
DnL

𝑑 : 𝐴 ⊑ 𝐵 Γ⊑ ⊢ 𝑀 ⊑𝑒 𝑁 : 𝑑

Γ⊑ ⊢ 𝑀 ⊑𝑒 ⟨𝐴 ↞ 𝐵⟩𝑁 : 𝐴
DnR

The rules UpR, UpL, DnL, and DnR were introduced in [9] as a means of cleanly axiomatizing the

intended behavior of casts in a way that doesn’t depend on the specific constructs of the language.

Intuitively, rule UpR says that the upcast of𝑀 is an upper bound for 𝑀 in that𝑀 may error more,

and UpL says that the upcast is the least such upper bound, in that it errors more than any other

upper bound for𝑀 . Conversely, DnL says that the downcast of𝑀 is a lower bound, and DnR says

that it is the greatest lower bound.
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Γ 𝐴

Γ′ 𝐴′

Γ′′ 𝐴′′𝑀′′

𝑀′

𝑀

⊑
𝑐

⊑
𝑐 ′

⊑
Γ
𝑐

⊑
Γ
𝑐 ′

Fig. 4. Heterogeneous transitivity.

3.4 Removing Transitivity
The first observation we make is that transitivity of type precision, and heterogeneous transitivity

of term precision, are admissible. That is, consider a related language which is the same as Ext-𝜆

excpet that we have removed the composition rule for type precision and the heterogeneous

transitivity rule for type precision. Denote this language by Ext-𝜆−trans. We claim that in this new

language, the rules we removed are derivable from the remaining rules. More specifically, consider

the following situation in Ext-𝜆:

TODO

3.5 Removing Casts
We now observe that all casts, except those between Nat and ? and between ? ⇀? and ?, are

admissible. Consider a new language (Ext-𝜆−trans−cast) in which instead of having arbitrary casts,

we have injections from Nat and ? ⇀? into ?, and case inspections from ? to Nat and ? to ? ⇀?.

We claim that in Ext-𝜆−trans−cast, all of the casts present in Ext-𝜆−trans are derivable. It will suffice to

verify that casts for function type are derivable. This holds becasue function casts are constructed

inductively from the cast for their domain and codomain. The base case is one of the casts inolving

Nat or ? ⇀? which are present in Ext-𝜆−trans−cast as injections and case inspections.

The resulting calculus now lacks transitivity of type precision, heterogeneous transitivity of

term precision, and arbitrary casts. In this setting, rather than type precision, it makes more sense

to speak of arbitrary monotone relations on types, which we denote by𝐴 ◦−• 𝐴′
. We have relations

on value types, as well as on computation types.

Value Relations 𝑅 := Nat | ? | (𝑅 ⇀ 𝑅) | ?
Computation Relations 𝑆 := Lift𝑅

Value Relation Contexts Γ◦−• := · | Γ◦−•, 𝐴◦−• (𝑥𝑙 : 𝐴𝑙 , 𝑥𝑟 : 𝐴𝑟 )
Computation Relation Contexts Δ◦−•

:= · | • : 𝐵◦−• | Δ◦−•, 𝐴◦−• (𝑥𝑙 : 𝐴𝑙 , 𝑥𝑟 : 𝐴𝑟 )

3.6 The Step-Sensitive Lambda Calculus
From here, we define an step-sensitive (also called intensional) GSTLC. As mentioned, this language

makes the intensional stepping behavior of programs explicit in the syntax. We do this by adding a

syntactic “later” type and a syntactic 𝜃 that maps terms of type later 𝐴 to terms of type 𝐴.

In the step-sensitive syntax, we add a type constructor for later, as well as a syntactic 𝜃 term

and a syntactic next term. We add rules for each of these, and also modify the rules for inj-arr and

case-arr, since now the function is not Dyn ⇀ Dyn but rather ▷ (Dyn ⇀ Dyn).

11
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We define an erasure function from step-sensitive syntax to step-insensitive syntax by induction

on the step-sentive types and terms. The basic idea is that the syntactic type ▷ 𝐴 erases to 𝐴, and

next and 𝜃 erase to the identity.

3.7 Quotienting by Syntactic Bisimilarity
4 DOMAIN-THEORETIC CONSTRUCTIONS
In this section, we discuss the fundamental objects of the model into which we will embed the

intensional lambda calculus and inequational theory. It is important to remember that the construc-

tions in this section are entirely independent of the syntax described in the previous section; the

notions defined here exist in their own right as purely mathematical constructs. In the next section,

we will link the syntax and semantics via an interpretation function.

4.1 The Lift Monad
When thinking about how to model intensional gradually-typed programs, we must consider their

possible behaviors. On the one hand, we have failure: a program may fail at run-time because of a

type error. In addition to this, a program may “think”, i.e., take a step of computation. If a program

thinks forever, then it never returns a value, so we can think of the idea of thinking as a way of

intensionally modelling partiality.
With this in mind, we can describe a semantic object that models these behaviors: a monad

for embedding computations that has cases for failure and “thinking”. Previous work has studied

such a construct in the setting of the latter, called the lift monad [6]; here, we augment it with the

additional effect of failure.

For a type 𝐴, we define the lift monad with failure 𝐿℧𝐴, which we will just call the lift monad, as
the following datatype:

𝐿℧𝐴 :=

𝜂 : 𝐴 → 𝐿℧𝐴

℧ : 𝐿℧𝐴

𝜃 : ▷ (𝐿℧𝐴) → 𝐿℧𝐴

Unless otherwise mentioned, all constructs involving ▷ or fix are understood to be with repsect

to a fixed clock 𝑘 . So for the above, we really have for each clock 𝑘 a type 𝐿𝑘℧𝐴 with respect to that

clock.

Formally, the lift monad 𝐿℧𝐴 is defined as the solution to the guarded recursive type equation

𝐿℧𝐴 � 𝐴 + 1+ ▷ 𝐿℧𝐴.

An element of 𝐿℧𝐴 should be viewed as a computation that can either (1) return a value (via 𝜂),

(2) raise an error and stop (via ℧), or (3) think for a step (via 𝜃 ). Notice there is a computation fix𝜃
of type 𝐿℧𝐴. This represents a computation that thinks forever and never returns a value.

Since we claimed that 𝐿℧𝐴 is a monad, we need to define the monadic operations and show

that they repect the monadic laws. The return is just 𝜂, and extend is defined via by guarded

recursion by cases on the input. Verifying that the monadic laws hold requires Löb-induction and

is straightforward.

The lift monad has the following universal property. Let 𝑓 be a function from 𝐴 to 𝐵, where 𝐵 is

a ▷-algebra, i.e., there is 𝜃𝐵 : ▷ 𝐵 → 𝐵. Further suppose that 𝐵 is also an “error-algebra”, that is, an

algebra of the constant functor 1 : Type → Type mapping all types to Unit. This latter statement

amounts to saying that there is a map Unit → 𝐵, so 𝐵 has a distinguished “error element" ℧𝐵 : 𝐵.
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Then there is a unique homomorphism of algebras 𝑓 ′ : 𝐿℧𝐴 → 𝐵 such that 𝑓 ′ ◦ 𝜂 = 𝑓 . The

function 𝑓 ′(𝑙) is defined via guarded fixpoint by cases on 𝑙 . In the ℧ case, we simply return ℧𝐵 . In

the 𝜃 ( ˜𝑙) case, we will return

𝜃𝐵 (𝜆𝑡 .(𝑓 ′𝑡 ˜𝑙𝑡 )) .

Recalling that 𝑓 ′ is a guaded fixpoint, it is available “later” and by applying the tick we get a

function we can apply “now”; for the argument, we apply the tick to
˜𝑙 to get a term of type 𝐿℧𝐴.

4.2 Predomains
The next important construction is that of a predomain. A predomain is intended to model the notion

of error ordering that we want terms to have. Thus, we define a predomain 𝐴 as a partially-ordered

set, which consists of a type which we denote ⟨𝐴⟩ and a reflexive, transitive, and antisymmetric

relation ≤𝑃 on 𝐴.

For each type we want to represent, we define a predomain for the corresponding semantic type.

For instance, we define a predomain for natural numbers, a predomain for the dynamic type, a

predomain for functions, and a predomain for the lift monad. We describe each of these below.

We define monotone functions between predomain as expected. Given predomains 𝐴 and 𝐵, we

write 𝑓 : 𝐴 →𝑚 𝐵 to indicate that 𝑓 is a monotone function from 𝐴 to 𝐵, i.e, for all 𝑎1 ≤𝐴 𝑎2, we

have 𝑓 (𝑎1) ≤𝐵 𝑓 (𝑎2).

• There is a predomain Nat for natural numbers, where the ordering is equality.

• There is a predomain Dyn to represent the dynamic type. The underlying type for this

predomain is defined by guarded fixpoint to be such that ⟨Dyn⟩ � N+ ▷ (⟨Dyn⟩ →𝑚 ⟨Dyn⟩).
This definition is valid because the occurrences of Dyn are guarded by the ▷. The ordering is

defined via guarded recursion by cases on the argument, using the ordering on N and the

ordering on monotone functions described below.

• For a predomain 𝐴, there is a predomain 𝐿℧𝐴 for the “lift” of 𝐴 using the lift monad. We use

the same notation for 𝐿℧𝐴 when 𝐴 is a type and 𝐴 is a predomain, since the context should

make clear which one we are referring to. The underling type of 𝐿℧𝐴 is simply 𝐿℧⟨𝐴⟩, i.e.,
the lift of the underlying type of𝐴. The ordering on 𝐿℧𝐴 is the “step-sensitive error-ordering”

which we describe in 4.3.

• For predomains 𝐴𝑖 and 𝐴𝑜 , we form the predomain of monotone functions from 𝐴𝑖 to 𝐴𝑜 ,

which we denote by 𝐴𝑖 ⇒ 𝐴𝑜 . The ordering is such that 𝑓 is below 𝑔 if for all 𝑎 in ⟨𝐴𝑖⟩, we
have 𝑓 (𝑎) is below 𝑔(𝑎) in the ordering for 𝐴𝑜 .

4.3 Step-Sensitive Error Ordering
As mentioned, the ordering on the lift of a predomain 𝐴 is called the step-sensitive error-ordering
(also called “lock-step error ordering”), the idea being that two computations 𝑙 and 𝑙 ′ are related if

they are in lock-step with regard to their intensional behavior, up to 𝑙 erroring. Formally, we define

this ordering as follows:

• 𝜂 𝑥 ≲ 𝜂 𝑦 if 𝑥 ≤𝐴 𝑦.

• ℧ ≲ 𝑙 for all 𝑙

• 𝜃 𝑟 ≲ 𝜃 𝑟 ′ if ▷𝑡 (𝑟𝑡 ≲ 𝑟 ′𝑡 )

We also define a heterogeneous version of this ordering between the lifts of two different

predomains 𝐴 and 𝐵, parameterized by a relation 𝑅 between 𝐴 and 𝐵.
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4.4 Step-Insensitive Relation
We define another ordering on 𝐿℧𝐴, called the “step-insensitive ordering” or “weak bisimilarity”,

written 𝑙 ≈ 𝑙 ′. Intuitively, we say 𝑙 ≈ 𝑙 ′ if they are equivalent “up to delays”. We introduce the

notation 𝑥 ∼𝐴 𝑦 to mean 𝑥 ≤𝐴 𝑦 and 𝑦 ≤𝐴 𝑥 .

The weak bisimilarity relation is defined by guarded fixpoint as follows:

℧ ≈ ℧
𝜂 𝑥 ≈ 𝜂 𝑦 if 𝑥 ∼𝐴 𝑦

𝜃 𝑥 ≈ 𝜃 𝑦 if ▷𝑡 (𝑥𝑡 ≈ 𝑦𝑡 )
𝜃 𝑥 ≈ ℧ if 𝜃 𝑥 = 𝛿𝑛 (℧) for some 𝑛

𝜃 𝑥 ≈ 𝜂 𝑦 if (𝜃 𝑥 = 𝛿𝑛 (𝜂 𝑥)) for some 𝑛 and 𝑥 : ⟨𝐴⟩ such that 𝑥 ∼𝐴 𝑦

℧ ≈ 𝜃 𝑦 if 𝜃 𝑦 = 𝛿𝑛 (℧) for some 𝑛

𝜂 𝑥 ≈ 𝜃 𝑦 if (𝜃 𝑦 = 𝛿𝑛 (𝜂 𝑦)) for some 𝑛 and 𝑦 : ⟨𝐴⟩ such that 𝑥 ∼𝐴 𝑦

4.5 Error Domains
4.6 Globalization
Recall that in the above definitions, any occurrences of ▷ were with repsect to a fixed clock 𝑘 .

Intuitively, this corresponds to a step-indexed set. It will be necessary to consider the “globalization”

of these definitions, i.e., the “global” behavior of the type over all potential time steps. This is

accomplished in the type theory by clock quantification [1], whereby given a type 𝑋 parameterized

by a clock 𝑘 , we consider the type ∀𝑘.𝑋 [𝑘]. This corresponds to leaving the step-indexed world

and passing to the usual semantics in the category of sets.

5 SEMANTICS
5.1 Relational Semantics
5.1.1 Term Precision via the Step-Sensitive Error Ordering.

6 UNARY CANONICITY
Before discussing graduality, we seek to prove its “unary” analogue. Namely, instead of considering

inequality between terms, we start by considering equality.

7 GRADUALITY
The main theorem we would like to prove is the following:

Theorem 7.1 (Graduality). If · ⊢ 𝑀 ⊑ 𝑁 : Nat, then

(1) If 𝑁 = ℧, then𝑀 = ℧
(2) If 𝑁 = ‘𝑛, then𝑀 = ℧ or𝑀 = ‘𝑛

(3) If𝑀 = 𝑉 , then 𝑁 = 𝑉

8 DISCUSSION
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