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Abstract—Since the Gaussian-inverse Wishart hierarchical for-
m has similar properties to Student’s t distribution, we name
it generalized t distribution in this paper. Based on this, a
robust generalized t distribution based Kalman filter (GTKF)
is proposed for state-space models that are eroded by state and
measurement outliers. Different from the existing algorithms, the
state transition and measurement likelihood densities are directly
modeled as generalized t distributions by employing the one-step
smoothing strategy. An analytical closed-form solution can be
obtained through the variational inference approach. Moreover,
two variants of the proposed GTKF are also presented to apply
to different engineering scenarios. Simulation and experimental
examples demonstrate that the proposed GTKFs yield improved
robustness over the existing algorithms.

Index Terms—Roust estimation, heavy-tailed noise, Student’s
t distribution, outliers, variational inference

I. INTRODUCTION

ESTIMATING latent state from a series of noisy mea-
surements is a fundamental task in plenty of engineering

fields such as robotics [1], multi-target tracking [2] and
navigation [3]. For linear Gaussian state-space models, the
Kalman filter (KF) presents an optimal estimation and has been
extensively applied due to its simple structure and real-time
operation [4]. Outliers are widespread in engineering appli-
cations. For example, in the cooperative localization (CL) for
autonomous underwater vehicles (AUVs), the acoustic ranging
outliers may be induced by sound ray bending and multipath
effect of underwater acoustic channel [5], [6]. The velocity
outliers often occur when the Doppler velocity log (DVL) is
misaligned with the body framework [7]. Other outliers can
also be caused by sensor failures, model mismatches or power
surges [8]. The performance of KF degrades dramatically
given such non-Gaussian noises.

To counteract the impacts of outlier interferences, a batch
of M-estimators have been developed by embedding different
error criterions into the maximum likelihood framework. The
Huber KF (HKF) is proposed by minimizing the Huber
cost function [9]. The maximum correntropy KF (MCKF) is
proposed by maximizing the correntropy cost function [10].
By minimizing an error entropy cost function, the minimum
error entropy KF (MEEKF) is also developed to suppress the
negative effects of outliers. Although present better robustness
than the classical KF, the M-estimators discard the statistical
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property contained in the non-Gaussian noises, which degrades
their estimation performance [11]. Motivated by this, some
Student’s t distribution based robust filters are presented to
fully consider the tail behaviors of the non-Gaussian noises
[12]-[15]. The Student’s t filter (STF) is derived based on the
Bayesian rule by formulating the joint predicted probability
density function (PDF) of the state and measurement as a
multivariate Student’s t distribution [12], [13]. More advanced,
the Student’s t based KF (STKF) is proposed by formulating
the Student’s t distributed predicted and measurement likeli-
hood PDFs as Gaussian-Gamma hierarchical (GGH) forms,
and the state variable and modeling parameters are jointly
estimated through the variational Bayesian (VB) principle
[11]. The STKF is further improved by estimating the degrees
of freedom (Dof) parameters online [14], [15]. However,
upon addressing the state outliers, the exiting STKFs model
the predicted PDF rather than the state transition PDF as a
Student’s t distribution, which leads to poor robustness to
the state outliers. Taking such indirectly modeling manner
because the state transition PDF is non-conjugate under the
GGH formulation. In [16], a robust inference technology is
proposed by factorizing the measurement likelihood PDF as a
Gaussian-inverse Wishart hierarchical (GIWH) form, whereas
it performs poorly when the system is eroded by state outliers
since this inference technology is derived based on a Gaussian
state noise assumption. The GIWH form has similar properties
to Student’s t distribution, which we name generalized t in this
paper [16]. The generalized t distribution is also employed to
design adaptive KF [17].

In this paper, a robust generalized t distribution based KF
(RTKF) is proposed. An analytical closed-form solution can be
obtained by utilizing the VB principle. The main contributions
of this paper are summarized as follows: 1) Different from
the existing STKFs, we propose to directly model the state
transition and measurement likelihood PDFs as generalized t
distributions by employing the one-step smoothing strategy,
which makes the proposed algorithms achieve better robust-
ness to the state outliers. 2) Two variants, namely, the low
computational complexity GTKF (LCC-GTKF) and nonlinear
GTKF(NGTKF), are also presented to apply to different en-
gineering scenarios. 3) Simulation and experimental examples
are conducted to demonstrate the superiority and usefulness
of the proposed algorithms.

The remainder of this paper is organized as follows. Section
II is devoted to providing the preliminaries and problem
formulations. The GTKF are developed in Section III. Variants
of GTKF and discussions are presented in Section IV. Simu-
lation analysis and experimental test are given in Section V.
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Conclusions are drawn in Section VI.
Notations: We use Ih to represent the h−dimensional iden-

tity matrix, and use Γm(·) to represent the m−dimensional
Gamma function, and use p(·) to represent the PDF. We denote
E[·] the mathematical expectation, and | · | the determinant
operation, and log(·) the logarithmic operation, and exp(·)
the exponential operation. We denote N(·;µ,V) the Gaussian
PDF with mean vector µ and covariance matrix V, G(·; θ, ϑ)
the Gamma PDF with shape parameter θ and rate parameter ϑ,
IW(·;∆, σ) the inverse Wishart PDF with scale matrix ∆ and
Dof σ, St(·;y,Y, η) the Student’s t PDF with mean y, scale
matrix matrix Y and Dof η. The symbol DKL(·||·) denotes
the Kullback-Leilber divergence (KLD), and superscript [l+1]
denotes the [l + 1]th iteration.

II. PRELIMINARIES AND PROBLEM FORMULATIONS

A. Linear State-Space Models

A linear and non-Gaussian discrete-time state-space model
is described as follows{

xt = Atxt−1 + vt−1

zt = Ctxt + nt
(1)

where t denotes the discrete time index. xt ∈ Rp is the latent
state and zt ∈ Rd is the measurement vector. At ∈ Rp×p

and Ct ∈ Rp×d are, respectively, the known state transition
and measurement matrices. vt and nt are, respectively, the
outliers-contaminated state and measurement noises, which
can be modeled by the following mixture forms

p (vt) = (1− αv
t )N (vt;0,Q0) + αv

t p̃ (vt) (2)
p (nt) = (1− αn

t )N (nt;0,R0) + αn
t p̃ (nt) (3)

where αv
t and αn

t are outlier probabilities. Q0 and R0 are,
respectively, the nominal state noise covariance matrix (S-
NCM) and measurement noise covariance matrix (MNCM).
We denote Qt and Rt the unknown real SNCM and MNCM,
and p̃ (·) is the PDF of outliers. The measurement outliers are
mostly caused by failing observations [9], and the state outliers
are usually induced by unexpected dynamics, modeling errors
and even sensor malfunctions [11], [14], such as the severe
manoeuvering for a kinematic evolution model in the target
tracking applications [18], and the measurement anomalies of
DVL and compass for a dead-reckoning (DR) model in the
CL for AUVs [14].

B. Student’s t based Kalman filters

To cope with the heavy-tailed state and measurement noises,
the STKFs propose to model the predicted and measurement
likelihood PDFs as Student’s t distributions [11], [14]

p (xt|z1:t−1) = St
(
xt; x̂

−
t ,Σt, ωx

)
(4)

p (zt|xt) = St (zt;Ctxt,R0, ωz) (5)

where Σt is the predicted scale matrix. Employing the GGH
property of Student’s t distribution, the above densities are

rewritten as

p (xt|z1:t−1) =

∫
N

(
xt; x̂

−
t ,

Σt

ξt

)
G
(
ξt;

ωx

2
,
ωx

2

)
dξt (6)

p (zt|xt) =

∫
N

(
zt;Ctxt,

Rt

λt

)
G
(
λt;

ωz

2
,
ωz

2

)
dλt (7)

To further suppress the affects of state outliers, meanwhile,
the predicted scale matrix Σt is estimated online by selecting
an IW distribution as the conjugate prior [11], [14]

p (Σt) = IW (Σt;Φ0, ϕ0) (8)

The posterior PDF is assumed to be Gaussian distribut-
ed, i.e. p(xt−1|z1:t−1) = N(xt−1; x̂t−1,Pt−1). Follow-
ing the VB principle, the intractable joint posterior PDF
p (xt,Σt, ξt, λt|z1:t) is approximated by a factorable product
of several independent PDFs, i.e.,

p (xt,Σt, ξt, λt|z1:t) ≈ q (xt) q (Σt) q (ξt) q (λt) (9)

where q (·) is the approximate posterior PDF, which can be
iteratively computed by minimizing the KLD between the
approximate posterior PDF and real posterior PDF [11], [14]:

{q (xt) , q (Σt) , q (ξt) , q (λt)} = min

DKL (q (xt) q (Σt) q (ξt) q (λt) ∥p (xt,Σt, ξt, λt|z1:t)) (10)

where DKL(q(a)||p(a)) ,
∫
q(a) log q(a)

p(a)da.
Embedding the modified predicted covariance matrix and

MNCM into the KF framework yields the STKFs [11], [14].

C. Motivation of This Work

Although the existing STKFs can effectively suppress the
influence of measurement outliers, they exhibit poor robustness
to the state outliers due to the significant approximate errors
in dealing with the heavy-tailed state noise. The detailed
motivation of this work is presented as follows.

1) Large non-conjugate approximation errors. In view of
(2), the heavy-tailed state noise is described as a Student’s
t distribution [12]. Naturally, the state transition PDF can be
formulated by

p(xt | xt−1) =

∫
N

(
xt;Atxt−1,

Q0

γt

)
G
(
γt;

ωx

2
,
ωx

2

)
dγt

(11)
Using the Chapman-Kolmogorov equation and exploiting

the Gaussian assumption for posterior density in STKFs, the
predicted PDF should be formulated as

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

=

∫
N(xt;Atx̂t−1, P̄t(γt))G(γk;

ωx

2
,
ωx

2
)dγt

(12)

where the scale matrix P̄t(γt) is computed by P̄t(γt) =
AtPt−1A

T
t + Q0

γt
. It is obvious that the integral in (12) is

analytically intractable, and the variational update will be non-
conjugate under the GGH forms. Hence, an approximation is
made in STKFs to acquire a conjugate update [11], [14], i.e.,

P̄t(γt) ≈ (AtPt−1A
T
t +Q0)/γt (13)
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Using (13) in (12) and using Σt = AtPt−1A
T
t + Q0 yield

the approximate equation in (4). That is, it is the predicted
PDF rather than the state transition PDF that is modeled as a
student’s t distribution. This indirectly modeling manner leads
to poor robustness of the STKFs to the state outliers.

2) The Gaussian-inverse Wishart density follows a general-
ized t distribution. If the PDF of a random vector y ∈ Rm

can be formulated as the following GIWH form

p(y) =

∫
N(y;µy,Λy)IW(Λy;F, f)dΛy (14)

Then the PDF p(y) follows a generalized t distribution [16],
[17], i.e.,

p(y) =
Γm

(
f+1
2

)
√
|πF|Γm

(
f
2

) [
1 + (y − µy)

T
F−1 (y − µy)

]− f+1
2

(15)
Similar to the standard Student’s t distribution, the general-

ized t distribution is also a sub-exponential distribution and has
much heavier tails than the Gaussian. Particularly, if we set the
scale matrix F = f∆ and dimension m > 1, the generalized t
distribution exhibits heavier tail than the standard Student’s t
distribution St (y;µy,∆, f) since the exponent of the former
is lager than that of the later. When dimension m = 1, the
generalized t distribution degrades to the standard Student’s t
distribution. This setting for scale matrix F is commonly used
in the initialization of VB, see Algorithm 1.

The aforementioned problem represents the main motivation
of this work. To achieve better robustness to the state and
measurement outliers, a GTKF is proposed later, where the
state transition and measurement likelihood PDFs are directly
modeled as generalized t distributions. The analytical closed-
form solution are derived by the VB principle.

III. PROPOSED GTKF

A. Hierarchical Gaussian State-Space Model

Exploiting (14) and (15), the heavy-tailed state and measure-
ment noises can be modeled as generalized t distributions:

p (vt) =

∫
N(vt;0,Qt)IW(Qt;U0, u0)dQt (16)

p (nt) =

∫
N(nt;0,Rt)IW(Rt;V0, v0)dRt (17)

Using (1) in the above equations, the state transition and
measurement likelihood PDFs are, respectively, formulated by

p (xt|xt−1)=

∫
N(xt;Atxt−1,Qt−1)IW(Qt−1;U0, u0)dQt−1

(18)

p (zt|xt) =

∫
N(zt;Ctxt,Rt)IW(Rt;V0, v0)dRt (19)

As mentioned earlier, the scale matrices for (18) and (19) are
initialized as U0 = u0Q0 and V0 = v0R0, respectively.

The Gaussian assumption for posterior density in STKFs
[11] is inherited, namely

p(xt−1|z1:t−1) = N(xt−1; x̂t−1,Pt−1) (20)

x

z
t

t

t

tt t

u

t t

t

tt

v
t

Fig. 1: Graphical models comparisons. In (a), the state outliers
are indirectly addressed by estimating the predicted scale
matrix, while (b) directly estimates the SNCM on the Markov
nets. (a) Graphical model for the existing STKFs. (b) Graph-
ical model for the proposed algorithm.

Summarizing (18)-(20) we obtain the hierarchical Gaussian
state-space model

p (xt|xt−1,Qt−1) = N(xt;Atxt−1,Qt−1)
p(zt|xt,Rt) = N(zt;Ctxt,Rt)
p(xt−1|z1:t−1) = N(xt−1; x̂t−1,Pt−1)
p(Qt−1|z1:t−1) = IW(Qt−1;U0, u0)
p(Rt|z1:t−1) = IW(Rt;V0, v0)

(21)

It is worth noting that, unlike the existing algorithms where
the predicted PDF is modeled by a heavy-tailed distribution,
in the proposed hierarchical Gaussian probabilistic model,
we directly model the state transition PDF and measurement
likelihood PDF as generalized t distributions. The graphical
models comparisons are depicted in Fig. 1.

B. Proposed GTKF
To estimate the latent state xt given such outliers

eroded state and measurement noises, the joint posterior
PDF p(Θt|z1:t) should be computed firstly, where Θt ,
{xt,xt−1,Qt−1,Rt}. According to the VB principle, the
real but unknown PDF p(Θt|z1:t) can be approximated by
a factorable density, i.e.,

q(Θt) = q(xt,xt−1)q(Qt−1)q(Rt) (22)

where each q(·) can be analytically updated by solving the
following equation [19]

q(τt) ∝ exp
{
EΘt

(−τt) [log p(Θt, zt|z1:t−1)]
}

(23)

where τt ∈ Θt, and Θt
(−τt) is the complementary set

satisfying τt
∪

Θt
(−γt) = Θt. The joint PDF p(Θt, zt|z1:t−1)

in (23) can be factorized as

p(Θt, zt|z1:t−1) =p(zt|xt,Rt)p(xt|xt−1,Qt−1)p(xt−1|z1:t−1)

× p(Qt−1|z1:t−1)p(Rt|z1:t−1) (24)

The fixed-point iterative strategy is utilized to solve (23).
The update process of the approximate PDFs in [l + 1]th

iteration are given in the following subsections.
1) Update of q[l+1](Qt−1) and q[l+1](Rt) : Letting τt =

Qt−1 and substituting (21), (24) in (23), the PDF q[l+1](Qt−1)
can be updated as a IW distribution. Similarly, letting τt = Rt

and substituting (21), (24) in (23), the PDF q[l+1](Rt) can also
be updated as a IW distribution. Namely{

q[l+1](Qt−1) = IW(Qt−1;U
[l+1]
t , u

[l+1]
t )

q[l+1](Rt) = IW(Rt;V
[l+1]
t , v

[l+1]
t )

(25)
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where the updated Dofs and scale matrices for Qt−1 and Rt

are, respectively, computed by{
u
[l+1]
t = u0 + 1

U
[l+1]
t = U0 +D

[l]
t

,

{
v
[l+1]
t = v0 + 1

V
[l+1]
t = V0 +H

[l]
t

(26)

where the correction matrices D
[l]
t and H

[l]
t are expressed asD

[l]
t = E[l]

[
(xt −Atxt−1) (xt −Atxt−1)

T
]

H
[l]
t = E[l]

[
(zt −Ctxt) (zt −Ctxt)

T
] (27)

Further exploiting (27), the mathematical expectations are
calculated by

D
[l]
t =

(
x̂
[l]
t −Atx̂

s,[l]
t−1

)(
x̂
[l]
t −Atx̂

s,[l]
t−1

)T

+P
[l]
t

+AtP
s,[l]
t−1A

T
t −AtG

[l]
t P

[l]
t −

(
AtG

[l]
t P

[l]
t

)T

(28)

H
[l]
t =

(
zt −Ctx̂

[l]
t

)(
zt −Ctx̂

[l]
t

)T

+CtP
[l]
t CT

t (29)

where G
[l]
t is the smoothing gain. x̂[l]

t and P
[l]
t are the filtering

estimate and error covariance matrix at time t. x̂s,[l]
t−1 and P

s,[l]
t−1

are the smoothing estimate and error covariance matrix at time
t− 1. Their calculations will be given later.

Exploiting (25)-(27), the required expected sufficient statis-
tics (ESS) of Qt−1 and Rt are calculated by

Q̂
[l+1]
t−1 = U

[l+1]
t /u

[l+1]
t , R̂

[l+1]
t = V

[l+1]
t /v

[l+1]
t (30)

2) Update of q[l+1](xt,xt−1) : Employing the multiplication
theorem [19], the PDF q[l+1](xt,xt−1) can be factorized as

q[l+1](xt,xt−1) = q[l+1](xt−1|xt)q
[l+1](xt)

= N(xt−1;g
[l+1](xt),L

[l+1]
t−1 )N(xt; x̂

[l+1]
t ,P

[l+1]
t ) (31)

where the intermediate variables for q[l+1](xt−1|xt) are cal-
culated by

x̂
−,[l+1]
t = Atx̂

s,[l]
t−1

P
−,[l+1]
t = AtP

s,[l]
t−1A

T
t + Q̂

[l+1]
t−1

g[l+1](xt) = x̂
s,[l]
t−1 +G

[l+1]
t

(
xt − x̂

−,[l+1]
t

)
L
[l+1]
t−1 = P

s,[l]
t−1 −G

[l+1]
t P

−,[l+1]
t

(
G

[l+1]
t

)T

G
[l+1]
t = P

s,[l]
t−1A

T
t (P

−,[l+1]
t )−1

(32)

The approximate posterior PDF q[l+1](xt) can be computed
through the KF measurement update process:

x̂
[l+1]
t = x̂

−,[l+1]
t +K

[l+1]
t

(
zt −Ctx̂

−,[l+1]
t

)
K

[l+1]
t = P

−,[l+1]
t CT

t

[
CtP

−,[l+1]
t CT

t + R̂
[l+1]
t

]−1

P
[l+1]
t = (Ip −K

[l+1]
t Ct)P

−,[l+1]
t

(33)

Marginalizing q[l+1](xt,xt−1) over the current state xt

yields q[l+1](xt−1) = N(xt−1; x̂
s,[l+1]
t−1 ,P

s,[l+1]
t−1 ), where the

smoothing estimate and error covariance are computed byx̂
s,[l+1]
t−1 = x̂

s,[l]
t−1 +G

[l+1]
t

(
x̂
[l+1]
t − x̂

−,[l+1]
t

)
P

s,[l+1]
t−1 = P

s,[l]
t−1 +G

[l+1]
t

(
P

[l+1]
t −P

−,[l+1]
t

)(
G

[l+1]
t

)T

(34)

Algorithm 1: One Cycle of the Proposed GTKF
Input: x̂t−1, Pt−1, zt, Q0, R0, u0, v0, θ, L
Output: x̂t = x̂

[L]
t , Pt = P

[L]
t

Initialization: U0 = u0Q0, V0 = v0R0, x̂s,[0]
t−1 = x̂t−1,

P
s,[0]
t−1 = Pt−1, P−,[0]

t = AtPt−1A
T
t +Q0

Variational inference:
for l = 1, 2, · · · , L do

1. Update q[l](xt) by (33);
2. Update q[l](xt−1) by (32) and (34);
3. Calculate D

[l]
t and H

[l]
t by (28) and (29);

4. Update q[l](Qt−1), q[l](Rt) by (25)-(26) and (30);
if ∥x̂[l]

t − x̂
[l−1]
t ∥/∥x̂[l]

k|k∥ ≤ θ then
break;

end
end

One cycle of the proposed algorithm is summarized in
Algorithm 1, where θ is the termination threshold and L is
the maximal iteration number.

Remark 1. Substituting (26) in (30) and using the initial-
ization condition in Algorithm 1, the ESS of Qt−1 can be
recalculated as Q̂

[l+1]
t−1 = u0

u0+1Q0 + 1
u0+1D

[l]
t . Obviously,

the tuning parameter u0 balances the weights between the
prior nominal SNCM Q0 and the correction matrix D

[l]
t . The

larger the tuning parameter u0 is, the more prior information
is introduced, and vice versa. The influence of the tuning
parameter v0 can be analysed by the same way. Detailed
guideline for parameter selections see Section V. C.

IV. VARIANTS AND DISCUSSIONS

A. Low computational complexity GTKF

According to (31)-(32) we know that, the filtering
PDF q(xt−1|z1:t−1) is substituted by the smoothing PDF
q[l](xt−1|z1:t) in the proposed GTKF. The smoother can
provide higher estimation accuracy than filter while more
computational resources are needed. One can also obtain a
LCC-GTKF by giving up such substitution. This means that
the PDF q[l+1](xt,xt−1) in (31) is factorized as

q[l+1](xt,xt−1) = q[l+1](xt|xt−1)q(xt−1|z1:t−1)

= N(xt;Atxt−1, Q̂
[l+1]
t−1 )N(xt−1; x̂t−1,Pt−1) (35)

and the calculation of correction matrix D
[l]
t is simplified as

D
[l]
t =

(
x̂
[l]
t −Atx̂t−1

)(
x̂
[l]
t −Atx̂t−1

)T

+P
[l]
t +AtPt−1A

T
t

(36)

However, the estimation accuracy of such LCC-GTKF is
also decreased. The implementary VB process of the proposed
LCC-GTKF is presented in Algorithm 2.

B. Nonlinear GTKF

The NGTKF is easily to extend. Consider a nonlinear state-
space model as follows{

xt = at(xt−1) +mt + vt−1

zt = ct(xt) + nt
(37)
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Algorithm 2: VB Process of the Proposed LCC-GTKF
x̂−
t = Atx̂t−1

for l = 1, 2, · · · , L do
1. Update q[l](xt) :

P
−,[l]
t = AtPt−1A

T
t + Q̂

[l−1]
t−1 ;

K
[l]
t = P

−,[l]
t CT

t

[
CtP

−,[l]
t CT

t + R̂
[l−1]
t

]−1

;

x̂
[l]
t = x̂−

t +K
[l]
t

(
zt −Ctx̂

−
t

)
;

P
[l]
t = (Ip −K

[l]
t Ct)P

−,[l]
t ;

2. Calculate D
[l]
t and H

[l]
t :

D
[l]
t =(

x̂
[l]
t −Atx̂t−1

)(
x̂
[l]
t −Atx̂t−1

)T

+P
[l]
t +AtPt−1A

T
t ;

H
[l]
t =

(
zt −Ctx̂

[l]
t

)(
zt −Ctx̂

[l]
t

)T

+CtP
[l]
t CT

t ;

3. Update q[l](Qt−1), q[l](Rt) by (25)-(26) and (30);
if ∥x̂[l]

t − x̂
[l−1]
t ∥/∥x̂[l]

k|k∥ ≤ θ then
break;

end
end

where mt is the known control input. at(·) and ct(·) are state
transition function and measurement function, respectively.
The CL process for AUVs investigated in Section V can be
described by this nonlinear model.

To reduce the linearization errors, we propose to linearize
at(·) and ct(·) at the smoothing estimate x̂

s,[l]
t−1 and filtering

estimate x̂
[l]
t , respectively. Since x̂

s,[l]
t−1 and x̂

[l]
t are, respective-

ly, the nearest approximations of xt−1 and xt at the current
time. Employing the first-order Taylor expansion, the resultant
linear state-space model can be formulated as{

xt ≈ Atxt−1 + at(x̂
s,[l]
t−1)−Atx̂

s,[l]
t−1 +mt + vt−1

zt ≈ ctxt + ct(x̂
[l]
t )− ctx̂

[l]
t + nt

(38)

where for the sake of convenience, we still use At and Ct to
denote the Jacobian matrices of at(·) and ct(·), that is,

At =
∂at(xt−1)

∂xt−1

∣∣∣∣
xt−1=x̂

s,[l]
t−1

, Ct =
∂ct(xt)

∂xt

∣∣∣∣
xt=x̂

[l]
t

(39)

Then we define a pair of pseudo state and pseudo measure-
ment as follows{

x̃t = xt − at(x̂
s,[l]
t−1) +Atx̂

s,[l]
t−1 −mt

z̃t = zt − ct(x̂
[l]
t ) + ctx̂

[l]
t

(40)

Using (40) in (38), the resultant linear state-space model
has a similar form with (1). Exploiting (38)-(40), the predicted
estimate x̂−,[l+1]

t , posterior estimate x̂[l+1]
t , correction matrices

in the proposed GTKF should be recalculated as follows

x̂
−,[l+1]
t = at(x̂

s,[l]
t−1) +mt

x̂
[l+1]
t = x̂

−,[l+1]
t +K

[l+1]
t

(
z̃t −Ctx̂

−,[l+1]
t

)
D

[l]
t = E[l]

[
(x̃t −Atxt−1) (x̃t −Atxt−1)

T
]

H
[l]
t = E[l]

[
(z̃t −Ctxt) (z̃t −Ctxt)

T
] (41)

Incorporating the above modifications into Algorithm 1, we
obtain the implementation process of the proposed GTKF.

TABLE I: Parameter settings for the compared algorithms.

Filters Parameter settings

HKF [9] Tuning parameter α = 1.345

MCKF [10] Kernel size γ = 15

STKF [11] Tuning parameter τp = 5

STKF-Dof [14] Prior parameters a0 = c0 = 5,
b0 = d0 = 1, τp = τr = 5

GTKF u0 = v0 = 5

C. Superiority Analyses

Since the the scale matrices for (18) and (19) are ini-
tialized as U0 = u0Q0 and V0 = v0R0, the densities in
(18) and (19) will degrade to St (xt;Atxt−1,Q0, u0) and
St (zt;Ctxt,R0, v0) respectively when p = 1 and d = 1, and
exhibit heavier tails than the corresponding standard Student’s
t distributions when p > 1 and d > 1. This provides
advantages for the proposed GTKFs to address the complicated
outlier interferences.

Besides, the proposed GTKFs directly model the state
transition PDF and measurement likelihood PDF as gener-
alized t distributions by employing the one-step smoothing
strategy, which avoids unnecessary approximation errors as in
the existing STKFs. Therefore, the proposed GTKFs achieve
better estimation accuracy than the existing robust filters.

V. SIMULATIONS AND EXPERIMENTAL VERIFICATION

To validate the superiority, in this section, we first apply the
proposed GTKF in a simulation of agile target tracking. Then
a univariate growth model is used to validate the effectiveness
in nonlinear systems. Finally, an experiment on the CL for
AUVs is conducted to further verify the usefulness. The KF
with real noise covariances (KFRNC), HKF [20], MCKF [10],
STKF [11], and the STKF with adaptive Dof (STKF-Dof)
[14] are also applied to sketch a fair comparative picture.
The parameter settings for these compared algorithms are
listed in TABLE I. The root mean square errors (RMSEs) and
averaged RMSEs (ARMSEs) are taken as the performance
indices in the simulations [11]. Moreover, the localization
error (LE), averaged LE (ALE) and absolute value of biases
(AVB) are utilized in the experimental example to evaluate the
localization accuracy, which are, respectively, defined as [21]

LE(t) =
√
(Px,t − P̂x,t)2 + (Py,t − P̂y,t)2

ALE(t) = 1
Ns

∑Ns

t=1 LE(t)

AVB(t) =| Px,t − P̂x,t | + | Py,t − P̂y,t |
(42)

where (Px,t, Py,t) and (P̂x,t, P̂y,t) represent the benchmark
position and estimated position of AUV, respectively. Ns

represents the number of data samples.
The termination threshold and maximal iteration number

are, respectively, set as θ = 10−16 and L = 50. All the
algorithms are coded by MATLAB with an Intel Core i7-
10875H CPU @ 2.30 GHz.
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A. Simulation of Agile Target Tracking

In this simulation, we assume a two-dimensional constant
velocity (CV) model to describe the dynamic process of
tracking an agile target. The state and measurement noises
are heavy-tailed because of the target maneuver and glint
measurements. The CV model has a similar form with (1)
by setting

At =

[
I2 ∆I2
0 I2

]
Ct =

[
I2 0

]
(43)

where ∆ = 0.5s is the sample period. xk = [pxk, p
y
k, v

x
k , v

y
k ] is

the unknown state with components being the positions and
velocities along the X and Y coordinates, respectively.

The heavy-tailed state and measurement noises are produced
according to the following Gaussian mixture manners [11]

p (vt) = (1− αv
t )N (vt;0,Q0) + αv

tN(vt;0,U1Q0) (44)
p (nt) = (1− αn

t )N (nt;0,R0) + αn
t N(nt;0,U2R0) (45)

where the nominal SNCM and MNCM are given by

Q0 =

[
∆3

3 I2
∆2

2 I2
∆2

2 I2 ∆I2

]
R0 =

[
100m2 0m2

0m2 100m2

]
(46)

with the outlier probabilities being set as αv
t = αn

t = 0.1.
The initial state vector x̂0 follows a Gaus-

sian distribution with mean vector x0 =
[0m, 0m, 10m/s, 10m/s]T and error covariance matrix
P0 = diag([100m2, 100m2, 100m2/s2, 100m2/s2]). The
total simulation steps are 100, and 1000 Monte Carlo (MC)
runs are carried out. To better demonstrate the superiority of
the proposed GTKF, we consider three noise scenarios in this
example.

Case (i): In this case, we consider the moderately con-
taminated state and measurement noises with the magnified
coefficients being set as U1 = U2 = 100. The RMSEs from
the compared filters are sketched in Fig. 2, where “RMSEpos”
and “RMSEvel” denote the RMSEs of position and velocity,
respectively. As shown in Fig. 2, the existing STKF presents
smaller estimation deviations than other existing filters in such
moderate case. But the proposed GTKF outperforms the STKF
benefiting from the new design. The proposed LCC-GTKF
presents decreased estimation accuracy because the smoothing
estimate of the state at last time is replaced by the filtering
estimate. The STKF-Dof performs poorly due to the biased
estimation of the Dof parameters.

Case (ii): Then we consider the case with worse state
outlier interferences, where the magnified coefficients are,
respectively, set as U1 = 500, U2 = 100. The RMSEs are
sketched in Fig. 3. It is visible that all the existing robust al-
gorithms including the STKF suffers from significant accuracy
divergence in this case. The proposed GTKF and LCC-GTKF
exhibit satisfactory performance because the state transition
PDF is directly modeled as a generalized t distribution in our
design. The influence of state outliers can thus be effectively
resisted under this framework. To be clear, Fig. 4 shows the
ARMSEs by the KFRNC, STKF, the proposed GTKF and
LCC-GTKF when U1 ∈ [100, 1000] and U2 = 100. As shown
in Fig. 4, the varying intensity of state outliers has only small
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Fig. 2: RMSE comparisons in case (i).
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Fig. 3: RMSE comparisons in case (ii).
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Fig. 4: ARMSE comparisons by the KFRNC, STKF, the
proposed GTKF and LCC-GTKF when U1 ∈ [100, 1000] and
U2 = 100.

influence on the performance of the proposed GTKF and LCC-
GTKF.

Case (iii): Finally, we investigate the case where the state
and measurement noises are seriously contaminated, where
the magnified coefficients are set as U1 = U2 = 1000. As
show in Fig. 5, the STKF cannot converge in such severe
scenario. It is interesting that the MCKF can present some
robustness against the severe outlier interferences, but it is still
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Fig. 5: RMSE comparisons in case (iii).
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Fig. 6: Performance comparison between the STKF with
different Dofs and the proposed GTKF.

inferior in estimation accuracy. The proposed GTKF and LCC-
GTKF achieve the best performance because the employed
generalized t distributions have heavier tails than the Student’s
t distribution when dimensions p > 1 and d > 1, and also
benefits from the directly modeling manner. In STKF, the
values of Dof determine the tail behaviors of a Student’s t
distribution. A performance comparison between the STKF
with different Dofs and the proposed GTKF are depicted in
Fig. 6. It is observed that the accuracy degradation of STKF
caused by the non-conjugate approximation errors cannot
be easily counteracted by changing the value of Dof. The
ARMSEs comparisons and computational costs for a single
step run are listed in TABLE II, where “Pos.” and “Vel.”
denote the ARMSEs of position and velocity, respectively. The
seriously divergent results are omitted here. We can see that
the proposed GTKF achieves the best performance in all the
three cases. The proposed LCC-GTKF requires quite lower
computational cost than the proposed GTKF but slightly worse
estimation accuracy is presented.

B. Nonlinear Univariate Growth Model

In this part, the nonlinear univariate growth model is em-
ployed to further validate the effectiveness of the proposed
GTKF. The NGTKF proposed in Section IV. B is applied in
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Fig. 7: RMSE comparisons from the compared algorithms.

this example, and the first-order Taylor approximation is used
for other compared algorithms to address the nonlinearity. The
state-space model is given by [22]{

xt = 0.5xt−1 + 15 xt−1

1+x2
t−1

+ vt−1

zt =
x2
t

20 + nt
(47)

where the outliers eroded state and measurement noises vt
and nt are produced by a similar way as (44)–(45) with the
nominal noise variances being set as Q0 = R0 = 100, and
the magnified coefficients being set as U1 = U2 = 1000. The
number of total simulation steps is 100, and 1000 MC runs
are executed. A slide window with span of 10 is employed to
smooth the RMSE curves.

The RMSEs from the compared algorithms are depicted
in Fig. 7. It is visible that the existing robust filters exhibit
some robustness against the outlier interferences, but the
proposed NGTKF presents the best estimation performance.
The existing filters can hardly work well in the situations
with strong nonlinearity and severe outlier interferences. The
proposed NGTKF outperforms the existing algorithms mainly
because of two reasons: 1) The linearization errors are greatly
reduced by carefully selecting Taylor expansion points for the
nonlinear state transition and measurement functions, as given
in (39). 2) The negative impact of outlier interferences is effec-
tively suppressed by directly modeling the state transition and
measurement likelihood PDFs as generalized t distributions.

C. Experiment on CL for AUVs

In a master-slave CL framework, the leaders assist the
slave AUVs by sharing their accurate position information
with them. The leader usually works near the surface and is
equipped with a GPS receiver or a high accuracy integrated
navigation system to obtain accurate position in real time.
Correspondingly, the slave AUV is equipped with a low-cost
DR system composed of a DVL, a low-cost compass and a
pressure sensor [5], [6]. The DVL is used to perceive the
forward velocity ηf,t and starboard velocity ηs,t in body frame.
The compass is used to perceive the azimuth ψt in navigation
frame. The depth ht can be precisely measured by the pressure
sensor [5]. Besides, an acoustic modem (AM) is equipped on
each AUV to achieve the underwater acoustic communication.
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TABLE II: ARMSEs comparisons and computational times for a single step run.

Cases Filters KFRNC HKF MCKF STKF STKF-Dof LCC-GTKF GTKF

Case (i) Pos. (m) 22.80 18.91 19.41 11.46 19.21 13.11 10.50
Vel. (m/s) 8.97 8.63 8.54 7.69 9.50 8.03 7.37

Case (ii) Pos. (m) 26.29 51.90 28.69 22.35 32.94 15.23 12.84
Vel. (m/s) 15.33 19.75 16.67 15.68 22.81 12.36 11.99

Case (iii) Pos. (m) 69.35 76.77 42.95 - 61.87 19.81 16.97
Vel. (m/s) 26.63 28.98 23.82 26.99 - 17.89 16.32

Run time (ms) 0.01 0.56 0.41 1.40 2.16 0.85 1.59

1) Principles and Models: Given the position
(Px,t−1, Py,t−1) at last time and the information perceived by
the sensors, the slave AUVs can roughly locate themselves
by using the following DR model [14]{

Px,t = Px,t−1 + Ts(ηf,t cosψt + ηs,t sinψt) + vx,t−1

Py,t = Py,t−1 + Ts(ηf,t sinψt − ηs,t cosψt) + vy,t−1

(48)
where the three-dimensional (3D) state xt = [Px,t, Py,t, ht]

T

is simplified as a 2D state xt = [Px,t, Py,t]
T here because the

depth ht can be precisely measured by the pressure sensor.
Besides, Ts represents the sampling period, and vx,t and
vy,t are, respectively, the eastward and northward positioning
noises.

However, the LE of slave AUV will accumulate unbounded-
ly over time due to the measurement errors [21]. To overcome
this problem, the relative distance between the leader AUV and
slave AUV is introduced to correct the divergent LE, which is
calculated by

dt =
√
(Px,t − P r

x,t)
2 + (Py,t − P r

y,t)
2 + (ht − hrt )

2 (49)

where (P r
x,t, P

r
y,t, h

r
t ) represents the accurate position of leader

AUV at time t. Considering that the depth ht of slave AUV
can be precisely measured by the pressure sensor and using
(49), the 2D acoustic ranging equation is formulated as follows

zt =
√
d2t − (ht − hrt )

2 + nt

=
√
(Px,t − P r

x,t)
2 + (Py,t − P r

y,t)
2 + nt (50)

where zt denotes the 2D relative distance measurement, which
can be determined by the time of arrival (TOA) method, and
nt denotes the measurement noise.

According to the DR model and the acoustic ranging model
given in (48) and (50), the discrete-time state-space model for
a master-slave CL framework can be summarized as follows{

xt = Atxt−1 +mt + vt−1

zt = gt(xt) + nt
(51)

where the state transition matrix At = I2; control input mt =
[Ts(ηf,t cosψt + ηs,t sinψt), Ts(ηf,t sinψt − ηs,t cosψt)]

T;
state noise vt = [vx,t, vy,t]

T, nonlinear measurement function
gt(xt) =

√
(Px,t − P r

x,t)
2 + (Py,t − P r

y,t)
2.

As described in (48), the state noise vt is used to model the
measurement errors of DVL and compass. The state outliers
are easily to appear when the sensors suffer from measurement
anomalies or the lost lock effect of DVL occurs [7], [14].
The acoustic ranging outliers in (50) are mainly induced by

TABLE III: Performance specifications of the equipments.

Sensors Types Indices Parameters

GPS OEMV-2RT-2 Position precision 1.8 m (RMS)
Output frequency 10 Hz

AM ATM-885 Working range Up to 8000 m
Error rate Less than 10−7

DVL DS-99 Working range -150∼200 m/s
Detection precision 0.1%∼0.3%

Compass Heading precision 0.3◦

sound ray bending and multipath effect of underwater acoustic
channel [6], [21].

2) Experimental verification: In this experiment, three sur-
vey vessels are used to build up a master-slave CL framework,
where one vessel acts as the AUV and other two serve as
the leaders. The GPS receivers are equipped on the leaders
to obtain accurate positions. A low-cost DVL and a self-made
compass are equipped on the AUV to locate itself according to
(48). The GPS receiver is also equipped on the AUV to provide
benchmarks. All vessels communicate with each other by the
equipped AM. A sketch map of the underwater communication
process is depicted in Fig. 8 (a). As shown, the slave AUV
sends a request signal firstly, and then the leader, which
received the request signal, sends back a data packet including
its accurate position and the arrival time of the request signal.
Finally, the slave AUV can calculate the relative distance based
on the received information [14]. The experimental configu-
rations are given in Fig. 8 (b), and the real trajectories of all
vessels are depicted in Fig. 8 (c). Performance indices of the
equipments in Fig. 8 (b) are summarized in TABLE III, where
“RMS” denotes root mean square. As shown in Fig. 8 (c), the
AUV travels between the two leaders and only communicates
with one leader at any moment. About 1742 data samples are
collected in the experiment with a sampling frequency at 1
Hz. In practical applications, the real noise covariances are
usually unknown. Considering the sensor performance indices
and statistical analysis of the off-line data, we set the nominal
SNCM and MNCM as Q0 = diag[(0.5m)2 (0.5m)2] and
R0 = (

√
20m)2. The initial state is read from the GPS data

and set the initial error covariance as P0 = I2.
Fig. 9 plots the LEs from different algorithms. As shown,

the proposed NGTKF achieves the lowest estimation devia-
tions over the compared filters. Large deviations appear in the
LEs of extended KF (EKF) since it is specially designed for
Gaussian noises. The STKF performs poorly since the state
outliers are indirectly treated by modeling the predicted PDF
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Fig. 8: Experimental configurations. (a) A sketch map of
the underwater communication process. (b) The experimental
setup of the employed vessel (c) The real trajectories of the
AUV and leaders.
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Fig. 9: LE comparisons by the compared algorithms.

TABLE IV: ALEs and computation times for a single step run.

Filters EKF NRHKF MCKF STKF STKF-Dof NGTKF

ALE (m) 24.68 21.80 21.58 16.44 19.67 8.63
Time (ms) 0.02 0.16 0.03 0.75 0.82 0.48

as a heavy-tailed distribution. For a Student’s t distribution,
its modeling accuracy is very sensitive to the value of Dof
parameter. Hence the inaccurate estimation of Dof aggra-
vates the estimation degradation of STKF-Dof dramatically.
Although the HKF and MCKF present some robustness in
this experiment, their estimation accuracy is still unsatisfactory
since these M-estimators neglect the randomness of the state
variable.

In Fig. 10, we depict the box plots to compare the AVBs
from all filters statistically. In a box plot, the lowest point of
the lower whisker and the highest point of the higher whisker
denote the minimum and maximum, respectively. The box
is drawn from the first quartile to the third quartile with a

NRHKF MCKF STKF STKF-Dof EKF NGTKF
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Fig. 10: Box plots of AVBs from different filters.

horizontal line drawn in the middle to denote the median.
Asterisks beyond the whiskers denote the samples different
significantly from the rest of the dataset. The average level,
spread and skewness of each AVB are clearly displayed in Fig.
10. As shown, the proposed NGTKF achieves the smallest
maximum and median among all algorithms, which verifies
that the NGTKF possesses better accuracy both in extreme
and mild environments. The shortest spread indicates that the
proposed NGTKF has more stable performance. The positive
skewness of the AVBs from the existing algorithms indicates
they are easily to provide large deviations in complicated
situations. The ALEs and computation times for the applied
algorithms in a single step run are compared in TABLE
IV. It is seen that compared with the existing nonlinear
versions of the STKF and STKF-Dof, the proposed NGTKF
has been improved by 47.50% and 56.12% in accuracy but
only moderate computational cost is required.

The ALEs along with different iteration numbers are shown
in Fig. 11. One can see that the proposed NGTKF tends to
converge after only seven iterations. To provide a guideline
for parameter selections, the ALE of the NGTKF along with
different tuning parameters u0 and v0 are also depicted in
Fig. 12. It is visible that there is an optimal point for u0 lie in
(5, 8) when v0 = 1. Similarly, there is also an optimal point
for v0 lie in (0.5, 1.5) when u0 = 1. One can select a couple
of appropriate parameters for their engineering applications
by trial-and-error method. However, it’s interesting to see that
the fluctuations of ALE is quite small with varying tuning
parameters u0 and v0. That is, these tuning parameters can be
easily determined in applications.

VI. CONCLUSION

This paper proposes a GTKF, where the state transition and
measurement likelihood PDFs are modeled as generalized t
distributions by resorting to the one-step smoothing strategy.
Two variants of the GTKF are also presented to apply to
different engineering scenarios. Simulation and experimental
examples verify that the proposed GTKFs yield improved
robustness over the existing algorithms. Essentially, this paper
provides a new framework to address the non-Gaussian noises.
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Fig. 11: The ALEs with different iteration numbers.

2 4 6 8 10 12 14

Range of parameters

8.55

8.6

8.65

8.7

8.75

8.8

8.85

8.9

A
LE

 (m
)

v0 = 1, u0  [0.01,15]

u0 = 1, v0  [0.01,15]

Fig. 12: The ALEs with different tuning parameters.

Other non-Gaussian filters can be easily extended using this
framework by selecting appropriate distributions.
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